Antimicrobial Activity of Different Plant Extracts, Plant-Derived Compounds and Synthetic Derivatives of Natural Compounds on Pathogenic Microorganisms, 2nd Edition

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Plant-Derived Antibiotics".

Deadline for manuscript submissions: 15 December 2024 | Viewed by 8780

Special Issue Editors


E-Mail Website
Guest Editor
Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
Interests: flavonoid; natural compounds; biological activity; anticancer activity; antioxidant activity; chalcone; multidrug-resistant pathogens; food science; antimicrobial agents; cytotoxicity assays; amyloid; Crohn’s disease; AIEC; biofilm
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Food Chemistry and Biocatalysis, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
Interests: flavonoids; plant extracts; natural compounds; biotransformations; antimicrobial activity; antitumor activity; antioxidant activity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
Interests: enzymatic catalysis; biotransformation; organic synthesis; isolation natural products; chemistry of cosmetic
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We have published one successful Special Issue “Antimicrobial Activity of Different Plant Extracts, Plant-Derived Compounds and Synthetic Derivatives of Natural Compounds on Pathogenic Microorganisms https://www.mdpi.com/journal/antibiotics/special_issues/Plant_Antimi” This result encouraged us to produce a second volume on the same topic.

This second volume will include research and manuscripts regarding plant extracts and novel compounds, mainly of natural origin, characterized by strong biological activity. Research on alternative methods of obtaining new derivatives of natural origin are also welcome. Manuscripts that present the antimicrobial activity of natural compounds, including plant extracts, and chemical compounds commonly known to their synthetic derivatives will be appreciated. Manuscripts on the biological activity of natural extracts without proper chemical characterization will not be considered.

Dr. Anna Duda-Madej
Dr. Joanna Kozłowska
Dr. Katarzyna Wińska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial activity
  • plant extracts
  • plant-derived compounds
  • synthetic derivatives
  • flavonoids
  • multidrug resistance
  • pathogenic strains

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 10373 KiB  
Article
Clinacanthus nutans (Burm. f.) Lindau Extract Inhibits Dengue Virus Infection and Inflammation in the Huh7 Hepatoma Cell Line
by Kanyaluck Jantakee, Suthida Panwong, Pachara Sattayawat, Ratchaneewan Sumankan, Sasithorn Saengmuang, Kiattawee Choowongkomon and Aussara Panya
Antibiotics 2024, 13(8), 705; https://doi.org/10.3390/antibiotics13080705 - 28 Jul 2024
Viewed by 477
Abstract
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged [...] Read more.
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged activity to inhibit DENV and the liver inflammation caused by DENV infection. The study showed that treatment using C. nutans extract during DENV infection (co-infection step) showed the highest efficiency in lowering the viral antigen concentration to 22.87 ± 6.49% at 31.25 μg/mL. In addition, the virus–host cell binding assay demonstrated that C. nutans treatment greatly inhibited the virus after its binding to Huh7 cells. Moreover, it could remarkably lower the expression of cytokine and chemokine genes, including TNF-α, CXCL10, IL-6, and IL-8, in addition to inflammatory mediator COX-2 genes. Interestingly, the activation of the NF-κB signaling cascade after C. nutans extract treatment was dramatically decreased, which could be the underlying mechanism of its anti-inflammatory activity. The HPLC profile showed that gallic acid was the bioactive compound of C. nutans extract and might be responsible for the antiviral properties of C. nutans. Taken together, our results revealed the potential of C. nutans extract to inhibit DENV infection and lower inflammation in infected cells. Full article
Show Figures

Figure 1

32 pages, 7180 KiB  
Article
Screening Tests for the Interaction of Rubus idaeus and Rubus occidentalis Extracts with Antibiotics against Gram-Positive and Gram-Negative Human Pathogens
by Rafał Hałasa, Urszula Mizerska, Marta Kula and Mirosława Krauze-Baranowska
Antibiotics 2024, 13(7), 653; https://doi.org/10.3390/antibiotics13070653 - 15 Jul 2024
Viewed by 544
Abstract
WHO (World Health Organization) reports from recent years warn about the growing number of antibiotic-resistant bacterial strains. Therefore, there is an urgent need to constantly search for new substances effective in the fight against microorganisms. Plants are a rich source of chemical compounds [...] Read more.
WHO (World Health Organization) reports from recent years warn about the growing number of antibiotic-resistant bacterial strains. Therefore, there is an urgent need to constantly search for new substances effective in the fight against microorganisms. Plants are a rich source of chemical compounds with antibacterial properties. These compounds, classified as secondary metabolites, may act independently or support the action of currently used antibiotics. Due to the large number of metabolites isolated from the plant kingdom and new plant species being studied, there is a need to develop new strategies/techniques or modifications of currently applied methods that can be used to select plant extracts or chemical compounds isolated from them that enter into positive, synergistic interactions with currently used antibiotics. One such method is the dual-disk synergy test (DDST). It involves the diffusion of active compounds in the agar environment and influencing the growth of microorganisms grown on it. The method was used to assess the interaction of extracts from the fruit and shoots of some cultivated varieties of Rubus idaeus and Rubus occidentalis with selected antibiotics. The research was conducted on strains of bacteria pathogenic to humans, including Staphylococcus aureus, Corynebacterium diphtheriae, Escherichia coli, Pseudomonas aeruginosa, Helicobacter pylori, and Candida albicans, showing synergy, antagonism, or lack of interaction of the tested substances—plant extract and antibiotic. As a result, it was found that the diffusion method is useful in screening tests to assess the impact of antibiotic–herbal substance interactions on Gram-positive and Gram-negative microorganisms. Full article
Show Figures

Figure 1

19 pages, 2597 KiB  
Article
Chemical Characterization and Biological Properties Assessment of Euphorbia resinifera and Euphorbia officinarum Moroccan Propolis
by Oumaima Boutoub, Soukaina El-Guendouz, Isabel Matos, Lahsen El Ghadraoui, Maria Clara Costa, Jorge Dias Carlier, Maria Leonor Faleiro, Ana Cristina Figueiredo, Letícia M. Estevinho and Maria Graça Miguel
Antibiotics 2024, 13(3), 230; https://doi.org/10.3390/antibiotics13030230 - 29 Feb 2024
Viewed by 1407
Abstract
Although the plants of the genus Euphorbia are largely exploited by therapists in Morocco, the composition and antibacterial activities of propolis from these plants are still unknown. To address this gap, this study aimed to characterize the pollen type, the volatile compounds, and [...] Read more.
Although the plants of the genus Euphorbia are largely exploited by therapists in Morocco, the composition and antibacterial activities of propolis from these plants are still unknown. To address this gap, this study aimed to characterize the pollen type, the volatile compounds, and the phenolic and mineral profiles of three Euphorbia propolis samples collected in Morocco and evaluate their antimicrobial activities. The minimum inhibitory concentration of the propolis samples was determined by the microdilution method, and the anti-adherence activity was evaluated by the crystal violet assay. The examination of anti-quorum-sensing proprieties was performed using the biosensor Chromobacterium violaceum CV026. Pollen analysis revealed that Euphorbia resinifera pollen dominated in the P1 sample (58%), while E. officinarum pollen dominated in the P2 and P3 samples (44%). The volatile compounds were primarily composed of monoterpene hydrocarbons, constituting 35% in P1 and 31% in P2, with α-pinene being the major component in both cases, at 16% in P1 and 15% in P2. Calcium (Ca) was the predominant mineral element in both E. resinifera (P1) and E. officinarum (P2 and P3) propolis samples. Higher levels of phenols, flavonoids and dihydroflavonoids were detected in the E. officinarum P2 sample. The minimum inhibitory concentration (MIC) value ranged from 50 to 450 µL/mL against Gram-positive and Gram-negative bacteria. Euphorbia propolis displayed the ability to inhibit quorum sensing in the biosensor C. violaceum CV026 and disrupted bacterial biofilm formation, including that of resistant bacterial pathogens. In summary, the current study evidences the potential use of E. officinarum propolis (P2 and P3) to combat important features of resistant pathogenic bacteria, such as quorum sensing and biofilm formation. Full article
Show Figures

Figure 1

22 pages, 3437 KiB  
Article
Candida krusei M4CK Produces a Bioemulsifier That Acts on Melaleuca Essential Oil and Aids in Its Antibacterial and Antibiofilm Activity
by Jéssica Mayra Mendes Araujo, Joveliane Melo Monteiro, Douglas Henrique dos Santos Silva, Amanda Karoline Veira, Maria Raimunda Chagas Silva, Fernanda Avelino Ferraz, Fábio H. Ramos Braga, Ezequias Pessoa de Siqueira and Andrea de Souza Monteiro
Antibiotics 2023, 12(12), 1686; https://doi.org/10.3390/antibiotics12121686 - 30 Nov 2023
Viewed by 1146
Abstract
Surface-active compounds (SACs) of microbial origin are an active group of biomolecules with potential use in the formulation of emulsions. In this sense, the present study aimed to isolate and select yeasts from fruits that could produce SACs for essential oil emulsions. The [...] Read more.
Surface-active compounds (SACs) of microbial origin are an active group of biomolecules with potential use in the formulation of emulsions. In this sense, the present study aimed to isolate and select yeasts from fruits that could produce SACs for essential oil emulsions. The Candida krusei M4CK was isolated from the Byrsonima crassifolia fruit to make SACs. This emulsification activity (E24) was equal to or greater 50% in all carbon sources, such as olive oil, sunflower oil, kerosene, hexane, and hexadecane. E24 followed exponential growth according to the growth phase. The stability of emulsions was maintained over a wide range of temperatures, pH, and salinity. The OMBE4CK (melaleuca essential oil emulsion) had better and more significant inhibitory potential for biofilm reduction formation. In addition, bioemulsifier BE4CK alone on Escherichia coli and Pseudomonas aeruginosa biofilm showed few effective results, while there was a significant eradication for Staphylococcus aureus biofilms. The biofilms formed by S. aureus were eradicated in all concentrations of OMBE4CK. At the same time, the preformed biofilm by E. coli and P. aeruginosa were removed entirely at concentrations of 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL. The results show that the bioemulsifier BE4CK may represent a new potential for antibiofilm application. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 1948 KiB  
Review
The Molecular Mechanisms and Therapeutic Potential of Cranberry, D-Mannose, and Flavonoids against Infectious Diseases: The Example of Urinary Tract Infections
by Petros Ioannou and Stella Baliou
Antibiotics 2024, 13(7), 593; https://doi.org/10.3390/antibiotics13070593 - 26 Jun 2024
Viewed by 1148
Abstract
The treatment of infectious diseases typically includes the administration of anti-infectives; however, the increasing rates of antimicrobial resistance (AMR) have led to attempts to develop other modalities, such as antimicrobial peptides, nanotechnology, bacteriophages, and natural products. Natural products offer a viable alternative due [...] Read more.
The treatment of infectious diseases typically includes the administration of anti-infectives; however, the increasing rates of antimicrobial resistance (AMR) have led to attempts to develop other modalities, such as antimicrobial peptides, nanotechnology, bacteriophages, and natural products. Natural products offer a viable alternative due to their potential affordability, ease of access, and diverse biological activities. Flavonoids, a class of natural polyphenols, demonstrate broad anti-infective properties against viruses, bacteria, fungi, and parasites. Their mechanisms of action include disruption of microbial membranes, inhibition of nucleic acid synthesis, and interference with bacterial enzymes. This review explores the potential of natural compounds, such as flavonoids, as an alternative therapeutic approach to combat infectious diseases. Moreover, it discusses some commonly used natural products, such as cranberry and D-mannose, to manage urinary tract infections (UTIs). Cranberry products and D-mannose both, yet differently, inhibit the adhesion of uropathogenic bacteria to the urothelium, thus reducing the likelihood of UTI occurrence. Some studies, with methodological limitations and small patient samples, provide some encouraging results suggesting the use of these substances in the prevention of recurrent UTIs. While further research is needed to determine optimal dosages, bioavailability, and potential side effects, natural compounds hold promise as a complementary or alternative therapeutic strategy in the fight against infectious diseases. Full article
Show Figures

Figure 1

37 pages, 1964 KiB  
Review
Novel Siderophore Cephalosporin and Combinations of Cephalosporins with β-Lactamase Inhibitors as an Advancement in Treatment of Ventilator-Associated Pneumonia
by Szymon Viscardi, Ewa Topola, Jakub Sobieraj and Anna Duda-Madej
Antibiotics 2024, 13(5), 445; https://doi.org/10.3390/antibiotics13050445 - 14 May 2024
Viewed by 1022
Abstract
In an era of increasing antibiotic resistance among pathogens, the treatment options for infectious diseases are diminishing. One of the clinical groups especially vulnerable to this threat are patients who are hospitalized in intensive care units due to ventilator-associated pneumonia caused by multidrug-resistant/extensively [...] Read more.
In an era of increasing antibiotic resistance among pathogens, the treatment options for infectious diseases are diminishing. One of the clinical groups especially vulnerable to this threat are patients who are hospitalized in intensive care units due to ventilator-associated pneumonia caused by multidrug-resistant/extensively drug-resistant Gram-negative bacteria. In order to prevent the exhaustion of therapeutic options for this life-threatening condition, there is an urgent need for new pharmaceuticals. Novel β-lactam antibiotics, including combinations of cephalosporins with β-lactamase inhibitors, are proposed as a solution to this escalating problem. The unique mechanism of action, distinctive to this new group of siderophore cephalosporins, can overcome multidrug resistance, which is raising high expectations. In this review, we present the summarized results of clinical trials, in vitro studies, and case studies on the therapeutic efficacy of cefoperazone-sulbactam, ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol in the treatment of ventilator-associated pneumonia. We demonstrate that treatment strategies based on siderophore cephalosporins and combinations of β-lactams with β-lactamases inhibitors show comparable or higher clinical efficacy than those used with classic pharmaceuticals, like carbapenems, colistin, or tigecycline, and are often associated with a lower risk of adverse events. Full article
Show Figures

Figure 1

17 pages, 636 KiB  
Review
Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance
by Anna Duda-Madej, Szymon Viscardi and Ewa Topola
Antibiotics 2023, 12(11), 1612; https://doi.org/10.3390/antibiotics12111612 - 10 Nov 2023
Cited by 7 | Viewed by 2098
Abstract
Due to the fact that there is a steadily increasing trend in the area of antimicrobial resistance in microorganisms, there is a need to look for new treatment alternatives. One of them is the search for new β-lactamase inhibitors and combining them with [...] Read more.
Due to the fact that there is a steadily increasing trend in the area of antimicrobial resistance in microorganisms, there is a need to look for new treatment alternatives. One of them is the search for new β-lactamase inhibitors and combining them with β-lactam antibiotics, with the aim of increasing the low-dose efficacy, as well as lowering the resistance potential of bacterial strains. This review presents the positive effect of meropenem in combination with a vaborbactam (MER-VAB). This latest antibiotic-inhibitor combination has found particular use in the treatment of infections with the etiology of carbapenem-resistant Enterobacterales (CRE), Gram-negative bacteria, with a high degree of resistance to available antimicrobial drugs. Full article
Show Figures

Figure 1

Back to TopTop