Recent Advances in Applications of Nanoantioxidants

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Natural and Synthetic Antioxidants".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 798

Special Issue Editors


E-Mail Website
Guest Editor
Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 80131 Naples, Italy
Interests: nanotechnology; biomaterials; analytical methodologies applied to the chemical composition evaluation and nutritional property determination of natural substances; HPLC and UHPLC; GC; photodiode array detection (PDA); mass spectrometry (MS)
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino, 80131 Naples, Italy
Interests: nanotechnology; biomaterials; analytical methodologies applied to the chemical composition evaluation and nutritional property determination of natural substances; HPLC and UHPLC; GC; photodiode array detection (PDA); mass spectrometry (MS)

Special Issue Information

Dear Colleagues,

Antioxidants play a crucial role in protecting cells from damage caused by free radicals, which are unstable molecules known to contribute to the development of chronic diseases such as cancer and heart disease. Engineering antioxidants at the nanoscale introduces a range of potential advantages, including heightened bioavailability and stability, improved ability to traverse biological barriers and the possibility of enhancing antioxidant properties. These attributes make nanoantioxidants promising candidates for diverse applications across various sectors, including medicine, cosmetics, functional foods, etc. However, careful consideration of safety and toxicity implications is paramount before widespread implementation. This Special Issue aims to collect papers dealing with all aspects of antioxidants formulated as nanomaterials, in order to provide an updated overview of the state of the art, shedding light on their potential benefits, challenges and future directions.

Dr. Anna Calarco
Dr. Raffaele Conte
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoantioxidants
  • nanoscale engineering
  • medicine
  • cosmetics
  • functional foods
  • material characterization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3507 KiB  
Article
Novel Pyrroloquinoline Quinone-Modified Cerium Oxide Nanoparticles and Their Selective Cytotoxicity Under X-Ray Irradiation
by Elizaveta A. Zamyatina, Olga A. Goryacheva, Anton L. Popov and Nelli R. Popova
Antioxidants 2024, 13(12), 1445; https://doi.org/10.3390/antiox13121445 - 24 Nov 2024
Viewed by 472
Abstract
Ionizing radiation leads to the development of oxidative stress and damage to biologically important macromolecules (DNA, mitochondria, etc.), which in turn lead to cell death. In the case of radiotherapy, both cancer cells and normal cells are damaged. In this regard, the development [...] Read more.
Ionizing radiation leads to the development of oxidative stress and damage to biologically important macromolecules (DNA, mitochondria, etc.), which in turn lead to cell death. In the case of radiotherapy, both cancer cells and normal cells are damaged. In this regard, the development of new selective antioxidants is relevant. In this study, we first investigated the redox activity of cerium oxide-pyrroloquinoline quinone nanoparticles (CeO2@PQQ NPs) and their cytotoxic effects on normal (mouse fibroblasts, L929) and cancer (mouse adenocarcinoma, EMT6/P) cell cultures. Furthermore, the biological activity of CeO2@PQQ NPs was evaluated in comparison with that of CeO2 NPs and PQQ. The nanoparticles demonstrated pH-dependent reductions in the content of hydrogen peroxide after X-ray exposure. Our findings indicate that viability of EMT6/P cells was more adversely affected by CeO2@PQQ NPs at lower concentrations (0.1 μM) compared to L929. Following X-ray irradiation at a dose of 5 Gy, significant changes in mitochondrial potential (by 29%) and decreased glutathione levels (by 32%) were also observed in EMT6/P culture following irradiation and incubation with CeO2@PQQ NPs. Furthermore, EMT6/P exhibited a 2.5-fold increase in micronuclei and a 2-fold reduction in survival fraction compared to L929. It is hypothesized that CeO2@PQQ NPs may exhibit selective cytotoxicity and radiosensitizing properties against EMT6/P cancer cells. The findings suggest that CeO2@PQQ NPs may have potential as a selective redox-active antioxidant/pro-oxidant in response to X-ray radiation. Full article
(This article belongs to the Special Issue Recent Advances in Applications of Nanoantioxidants)
Show Figures

Figure 1

Back to TopTop