Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Cancer

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 4543

Special Issue Editors


E-Mail Website
Guest Editor
Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
Interests: vitamin C; cancer; bacteriophages; nutrition; oncogenesis; viruses; infectious diseases

E-Mail Website
Guest Editor
Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
Interests: vitamin C; cancer; glioblastoma; pancreas carcinoma; membrane transporters; oxidative stress

E-Mail Website
Guest Editor
Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
Interests: vitamin C; cancer; glioblastoma; malignant melanoma; pancreas carcinoma; flavonoids; epigenetics; senescence; organoids

E-Mail Website
Guest Editor
Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany
Interests: natural compounds; micronutrients; vitamin C; epigenetics; HDAC inhibitors; immunomodulators; hepatocellular carcinoma; malignant melanoma; glioblastoma; pancreas carcinoma; hop compounds; NK cells; senescence

Special Issue Information

Dear Colleagues,

Vitamin C is a very well-known water-soluble vitamin that acts as an antioxidant in physiological concentrations. Among others, it is also involved in collagen formation, the synthesis of neurotransmitters, and tissue repair. Unlike most animals, it cannot be synthesized by humans and is accordingly an essential micronutrient.

Cancer patients in advanced stages often show very low, sometimes almost scurvy-like, vitamin C plasma levels, and studies are accumulating that indicate the efficacy of parenteral high-dose vitamin C in the context of the therapy of various tumor entities. This Special Issue will now critically review the suitability of vitamin C in both tumor prevention and tumor therapy. Any original papers, review articles, or short communications that help clarify the possible advantages and disadvantages of vitamin C in this context, whether by elucidating the underlying mechanisms or efficacy in vitro, in vivo, or in clinical trials, are welcome.

Dr. Luigi Marongiu
Dr. Olga Renner
Dr. Markus Burkard
Prof. Dr. Sascha Venturelli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • ascorbate
  • vitamin C
  • cancer therapy
  • cancer prevention
  • antioxidants
  • prooxidants
  • oxidative stress
  • epigenetic activity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3926 KiB  
Article
Analysis of High-Dose Ascorbate-Induced Cytotoxicity in Human Glioblastoma Cells and the Role of Dehydroascorbic Acid and Iron
by Alban Piotrowsky, Markus Burkard, Katharina Hammerschmidt, Hannah K. Ruple, Pia Nonnenmacher, Monika Schumacher, Christian Leischner, Susanne Berchtold, Luigi Marongiu, Thomas A. Kufer, Ulrich M. Lauer, Olga Renner and Sascha Venturelli
Antioxidants 2024, 13(9), 1095; https://doi.org/10.3390/antiox13091095 - 10 Sep 2024
Viewed by 636
Abstract
Several studies have demonstrated, both in vitro and in animal models, the anti-tumor efficacy of high-dose ascorbate treatment against a variety of tumor entities, including glioblastoma, the most common and aggressive primary malignant brain tumor. The aim of this study was to investigate [...] Read more.
Several studies have demonstrated, both in vitro and in animal models, the anti-tumor efficacy of high-dose ascorbate treatment against a variety of tumor entities, including glioblastoma, the most common and aggressive primary malignant brain tumor. The aim of this study was to investigate the effects of high-dose ascorbate as well as dehydroascorbic acid on human glioblastoma cell lines and to evaluate different treatment conditions for the combined administration of ascorbate with magnesium (Mg2+) and iron (Fe3+). Intracellular levels of reactive oxygen species and the induction of cell death following ascorbate treatment were also investigated. We demonstrated high cytotoxicity and antiproliferative efficacy of high-dose ascorbate in human glioblastoma cells, whereas much weaker effects were observed for dehydroascorbic acid. Ascorbate-induced cell death was independent of apoptosis. Both the reduction in cell viability and the ascorbate-induced generation of intracellular reactive oxygen species could be significantly increased by incubating the cells with Fe3+ before ascorbate treatment. This work demonstrates, for the first time, an increase in ascorbate-induced intracellular ROS formation and cytotoxicity in human glioblastoma cells by pre-treatment of the tumor cells with ferric iron, as well as caspase-3 independence of cell death induced by high-dose ascorbate. Instead, the cell death mechanism caused by high-dose ascorbate in glioblastoma cells shows evidence of ferroptosis. The results of the present work provide insights into the efficacy and mode of action of pharmacological ascorbate for the therapy of glioblastoma, as well as indications for possible approaches to increase the effectiveness of ascorbate treatment. Full article
Show Figures

Figure 1

23 pages, 8375 KiB  
Article
Pharmacological Ascorbate Elicits Anti-Cancer Activities against Non-Small Cell Lung Cancer through Hydrogen-Peroxide-Induced-DNA-Damage
by Kittipong Sanookpan, Naphat Chantaravisoot, Nuttiya Kalpongnukul, Chatchapon Chuenjit, Onsurang Wattanathamsan, Sara Shoaib, Pithi Chanvorachote and Visarut Buranasudja
Antioxidants 2023, 12(9), 1775; https://doi.org/10.3390/antiox12091775 - 18 Sep 2023
Cited by 2 | Viewed by 2507
Abstract
Non-small cell lung cancer (NSCLC) poses a significant global health burden with unsatisfactory survival rates, despite advancements in diagnostic and therapeutic modalities. Novel therapeutic approaches are urgently required to improve patient outcomes. Pharmacological ascorbate (P-AscH; ascorbate at millimolar concentration in plasma) [...] Read more.
Non-small cell lung cancer (NSCLC) poses a significant global health burden with unsatisfactory survival rates, despite advancements in diagnostic and therapeutic modalities. Novel therapeutic approaches are urgently required to improve patient outcomes. Pharmacological ascorbate (P-AscH; ascorbate at millimolar concentration in plasma) emerged as a potential candidate for cancer therapy for recent decades. In this present study, we explore the anti-cancer effects of P-AscH on NSCLC and elucidate its underlying mechanisms. P-AscH treatment induces formation of cellular oxidative distress; disrupts cellular bioenergetics; and leads to induction of apoptotic cell death and ultimately reduction in clonogenic survival. Remarkably, DNA and DNA damage response machineries are identified as vulnerable targets for P-AscH in NSCLC therapy. Treatments with P-AscH increase the formation of DNA damage and replication stress markers while inducing mislocalization of DNA repair machineries. The cytotoxic and genotoxic effects of P-AscH on NSCLC were reversed by co-treatment with catalase, highlighting the roles of extracellular hydrogen peroxide in anti-cancer activities of P-AscH. The data from this current research advance our understanding of P-AscH in cancer treatment and support its potential clinical use as a therapeutic option for NSCLC therapy. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

37 pages, 2485 KiB  
Review
The Antitumour Mechanisms of Carotenoids: A Comprehensive Review
by Andrés Baeza-Morales, Miguel Medina-García, Pascual Martínez-Peinado, Sandra Pascual-García, Carolina Pujalte-Satorre, Ana Belén López-Jaén, Rosa María Martínez-Espinosa and José Miguel Sempere-Ortells
Antioxidants 2024, 13(9), 1060; https://doi.org/10.3390/antiox13091060 - 30 Aug 2024
Cited by 1 | Viewed by 954
Abstract
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing [...] Read more.
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins. The review also explores the pro-oxidant function of carotenoids within cancer cells. In fact, although their overall contribution to cellular antioxidant defences is well known and significant, some carotenoids can exhibit pro-oxidant effects under certain conditions and are able to elevate reactive oxygen species (ROS) levels in tumoural cells, triggering mitochondrial pathways that would lead to cell death. The final balance between their antioxidant and pro-oxidant activities depends on several factors, including the specific carotenoid, its concentration and the redox environment of the cell. Clinical trials are discussed, highlighting the conflicting results of carotenoids in cancer treatment and the importance of personalized approaches. Emerging research on rare carotenoids like bacterioruberin showcases their superior antioxidant capacity and selective cytotoxicity against aggressive cancer subtypes, such as triple-negative breast cancer. Future directions include innovative delivery systems, novel combinations and personalized treatments, aiming to enhance the therapeutic potential of carotenoids. This review highlights the promising yet complex landscape of carotenoid-based cancer therapies, calling for continued research and clinical exploration. Full article
Show Figures

Figure 1

Back to TopTop