Antioxidant Potential and Bioactivity of Sustainable Green Nanoparticles

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Natural and Synthetic Antioxidants".

Deadline for manuscript submissions: 20 January 2025 | Viewed by 4011

Special Issue Editors


E-Mail Website
Guest Editor
1. Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
2. Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Interests: controlled delivery system; liposomes; antioxidants; anti-inflammatory; sustainable production
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Centre of Molecular and Environmental Biology (CBMA), Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
2. Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Interests: (nano)biotechnology; microbial cell factories; bioremediation; multifunctional materials; sustainability and circular economy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nature provides various sources of bioactive compounds, many of which are potent antioxidants. The exploitation of such activities can be significantly optimized by coupling nanotechnology, as nanomaterials have unique features such as very small sizes, large surface-to-volume ratios, and thermal as well as electrical conductivity.

Notably, nanoparticles can be produced in microorganisms, marine organisms, or even plants through a process designated as green synthesis, wherein certain biological molecules act as stabilizing, reducing, and/or capping agents. This approach can capitalize from diverse biological sources, reducing (or even eliminating) the need for harmful reagents and high energy costs in nanoparticle production. Moreover, these production processes are easy to scale up and cost-effective.

The safety profile of nanoparticulate systems may also be improved, facilitating their translation for applications involving human exposure, such as in biomedicine, food, or cosmetics.

We invite you to submit original research manuscripts or review articles to this Special Issue, covering (i) various aspects of nanoparticle production using sustainable, green methodologies; (ii) aspects of the improved biocompatibility of biogenic nanoparticles; and (iii) different applications based on their antioxidant potential or other bioactivities.

We look forward to your contribution.

Dr. Andreia Gomes
Dr. Raúl Machado
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • green synthesis
  • nanotechnology
  • antioxidant activity
  • bioactive nanoparticles

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3594 KiB  
Article
Exploring the Therapeutic Potential of Green-Synthesized Gold Nanoparticles and Ericaria selaginoides Extract for Inflammatory Bowel Disease
by Nayana Freire de Almeida Fontes, Mário Fernandes, Noelia González-Ballesteros, Maria Carmen Rodríguez-Argüelles, Andreia Castro Gomes and Antoniella Souza Gomes Duarte
Antioxidants 2024, 13(8), 884; https://doi.org/10.3390/antiox13080884 - 23 Jul 2024
Viewed by 541
Abstract
Addressing disease remission and treatment adherence in inflammatory bowel diseases (IBDs), such as Crohn’s disease, poses significant challenges due to underlying oxidative and inflammatory processes. Nanotechnology emerges as a promising avenue for enhancing therapeutic outcomes in IBD by optimizing drug bioactivity, reducing toxicity, [...] Read more.
Addressing disease remission and treatment adherence in inflammatory bowel diseases (IBDs), such as Crohn’s disease, poses significant challenges due to underlying oxidative and inflammatory processes. Nanotechnology emerges as a promising avenue for enhancing therapeutic outcomes in IBD by optimizing drug bioactivity, reducing toxicity, and extending circulation time. Gold nanoparticles, known for their resistance to gastrointestinal pH and possessing antioxidant and anti-inflammatory properties, offer particular promise. They can be produced by green synthesis with seaweed Ericaria selaginoides (ES), itself associated with gastroprotective and anti-inflammatory activities. In a murine model of Crohn’s disease induced with 8% acetic acid, pretreatment with dexamethasone (0.2 mL/30 g) or Au@ES (25 and 50 mg/kg) effectively mitigated inflammatory features. Notably, ES (50 mg/kg) and Au@ES (50 mg/kg) administration resulted in significant reductions in both macroscopic and microscopic inflammation scores compared to the disease control group. Furthermore, these treatments normalized inflammatory cytokine expression while safeguarding myenteric plexus glial cells. They also impeded neutrophil activation, leading to reduced myeloperoxidase activity and lipid peroxidation, coupled with increased glutathione levels. In conclusion, ES and Au@ES exhibit potent efficacy in counteracting inflammation and oxidation processes in an experimental Crohn’s disease model, suggesting their potential as alternative therapeutic strategies for IBD. Full article
Show Figures

Figure 1

26 pages, 5605 KiB  
Article
Ocimum basilicum and Lagenaria siceraria Loaded Lignin Nanoparticles as Versatile Antioxidant, Immune Modulatory, Anti-Efflux, and Antimicrobial Agents for Combating Multidrug-Resistant Bacteria and Fungi
by Lamiaa A. El-Samahy, Yasmine H. Tartor, Adel Abdelkhalek, Ioan Pet, Mirela Ahmadi and Sameh M. El-Nabtity
Antioxidants 2024, 13(7), 865; https://doi.org/10.3390/antiox13070865 - 19 Jul 2024
Viewed by 574
Abstract
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum-loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) [...] Read more.
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum-loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) to find a solution for antimicrobial resistance. OB-LNPs and LS-LNPs were tested for their antimicrobial potential against Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis. OB-LNPs and LS-LNPs were further tested for their anti-efflux activity against ciprofloxacin-resistant Salmonella enterica strains and for treating Salmonella infection in a rat model. We also investigated the antifungal efficacy of OB-LNPs and LS-LNPs for treating T. rubrum infection in a guinea pig model. Both OB-LNPs and LS-LNPs showed strong antimicrobial potential against S. Typhimurium and T. rubrum infections. LS-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5–4 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.125–1 µg/mL. OB-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5–2 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.25–2 µg/mL. OB-LNPs and LS-LNPs downregulated the expression of ramA and acrB efflux pump genes (fold change values ranged from 0.2989 to 0.5434; 0.4601 to 0.4730 for ramA and 0.3842–0.6199; 0.5035–0.8351 for acrB). Oral administration of OB-LNPs and LS-LNPs in combination with ciprofloxacin had a significant effect on all blood parameters, as well as on liver and kidney function parameters. Oxidative stress mediators, total antioxidant capacity, and malondialdehyde were abolished by oral administration of OB-LNPs and LS-LNPs (0.5 mL/rat once daily for 5 days). Interferon-γ and tumor necrosis factor-α were also reduced in comparison with the positive control group and the ciprofloxacin-treated group. Histopathological examination of the liver and intestine of OB-LNPs and LS-LNPs-treated rats revealed an elevation in Salmonella clearance. Treatment of T. rubrum-infected guinea pigs with OB-LNPs and LS-LNPs topically in combination with itraconazole resulted in a reduction in lesion scores, microscopy, and culture results. In conclusion, OB-LNPs and LS-LNPs possess immunomodulatory and antioxidant potential and can be used as naturally derived nanoparticles for drug delivery and treatment of Salmonellosis and dermatophytosis infections. Full article
Show Figures

Figure 1

19 pages, 3857 KiB  
Article
Characterization and Therapeutic Potential of Curcumin-Loaded Cerium Oxide Nanoparticles for Interstitial Cystitis Management
by Yang-Chen Lin, Ya-Jyun Liang, Chun-Hong Zhang, Li-Jia Liu and Feng-Huei Lin
Antioxidants 2024, 13(7), 826; https://doi.org/10.3390/antiox13070826 - 10 Jul 2024
Viewed by 799
Abstract
Oxidative stress resulting from reactive oxygen species (ROS) is often considered to be the leading cause of interstitial cystitis (IC), which is a chronic inflammatory disease. Antioxidants have been proven to have promising therapeutic effects on IC. In this study, we present an [...] Read more.
Oxidative stress resulting from reactive oxygen species (ROS) is often considered to be the leading cause of interstitial cystitis (IC), which is a chronic inflammatory disease. Antioxidants have been proven to have promising therapeutic effects on IC. In this study, we present an antioxidant intervention for IC by introducing curcumin-loaded cerium oxide nanoparticles (Cur-CONPs). Recognizing oxidative stress as the primary contributor to IC, our research builds on previous work utilizing cerium oxide nanoparticles (CONPs) for their outstanding antioxidant and anti-inflammatory properties. However, given the need to effectively relieve acute inflammation, we engineered Cur-CONPs to harness the short-term radical-scavenging antioxidant prowess of curcumin. Through in vitro studies, we demonstrate that the Cur-CONPs exhibit not only robust antioxidant capabilities but also superior anti-inflammatory properties over CONPs alone. Furthermore, in vivo studies validate the therapeutic effects of Cur-CONPs on IC. Mice with IC subjected to the Cur-CONP treatment exhibited improved micturition behaviors, relief from pelvic pain sensitivity, and reduced expression of inflammatory proteins (IL-6, IL-1β, TNF-α, Cox2). These findings suggest that the synergistic antioxidant properties of the Cur-CONPs that combine the sustained antioxidant properties of CONPs and acute anti-inflammatory capabilities of curcumin hold promise as a novel treatment strategy for IC. Full article
Show Figures

Figure 1

29 pages, 6164 KiB  
Article
Nanoemulsions Based on Soluble Chenopodin/Alginate Complex for Colonic Delivery of Quercetin
by Arturo Intiquilla, Migdalia Arazo, Alexander Gamboa, Nelson Caro, Martin Gotteland, Alan Palomino-Calderón, Lilian Abugoch and Cristian Tapia
Antioxidants 2024, 13(6), 658; https://doi.org/10.3390/antiox13060658 - 27 May 2024
Cited by 1 | Viewed by 922
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder caused by uncontrolled immune activation and the subsequent destruction of the colon tissue. Quercetin (Qt) is a natural antioxidant and anti-inflammatory agent proposed as an alternative to mitigate IBD. However, its use is limited by [...] Read more.
Inflammatory bowel disease (IBD) is an autoimmune disorder caused by uncontrolled immune activation and the subsequent destruction of the colon tissue. Quercetin (Qt) is a natural antioxidant and anti-inflammatory agent proposed as an alternative to mitigate IBD. However, its use is limited by its low oral bioavailability. This study aimed to develop nanoemulsions (NEs) based on a soluble chenopodin/alginate (QPA) complex and Tween 80 (T80), intended for the colonic release of Qt, activated by the pH (5.4) and bacteria present in the human colonic microbiota. NEs with different ratios of QPA/Tw80 (F1-F6) were prepared, where F4Qt (60/40) and F5Qt (70/30) showed sizes smaller than 260 nm, PDI < 0.27, and high encapsulation efficiency (>85%). The stability was evaluated under different conditions (time, temperature, pH, and NaCl). The DSC and FTIR analyses indicated hydrophobic and hydrogen bonding interactions between QPA and Qt. F4Qt and F5Qt showed the greater release of Qt in PBS1X and Krebs buffer at pH 5.4 (diseased condition), compared to the release at pH 7.4 (healthy condition) at 8 h of study. In the presence of E. coli and B. thetaiotaomicron, they triggered the more significant release of Qt (ƒ2 < 50) compared to the control (without bacteria). The NEs (without Qt) did not show cytotoxicity in HT-29 cells (cell viability > 80%) and increased the antioxidant capacity of encapsulated Qt. Therefore, these NEs are promising nanocarriers for the delivery of flavonoids to the colon to treat IBD. Full article
Show Figures

Figure 1

Back to TopTop