Antioxidant Defenses against Pollution and Other Environmental Stresses

A special issue of Antioxidants (ISSN 2076-3921).

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 5851

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biology, University of Padova, 35122 Padova, Italy
Interests: antioxidant defenses; climate change; molecular evolution; physiological responses to stress
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biology, University of Padova, Padua, Italy
Interests: physiological responses of animals to environmental conditions where there are chemical contaminants that can also induce oxidative stress
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

All living organisms are, more or less, subject to stressful conditions. In some cases, these conditions depend on their natural ways of life, such as diet or locomotor activity. In other cases, they are linked to environmental conditions, which are modified by both abiotic and biotic factors. In particular, the former includes all the global changes that are affecting our planet, from climatic change to those dependent on anthropogenic activity, such as environmental contamination or acidification of the oceans.

During their evolution, living organisms have developed antioxidant defences, designed to counteract oxidative stress, which are expressed at the systemic, cellular and molecular levels.

This Special Issue aims to examine different aspects of oxidative stress, both in terms of effects on organisms and physiological responses useful to limit or avoid negative effects. Both field and laboratory studies will be considered, targeting organisms from all kingdoms.

Dr. Gianfranco Santovito
Dr. Paola Irato
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2754 KiB  
Article
Diurnal-Rhythmic Relationships between Physiological Parameters and Photosynthesis- and Antioxidant-Enzyme Genes Expression in the Raphidophyte Chattonella marina Complex
by Koki Mukai, Xuchun Qiu, Yuki Takai, Shinobu Yasuo, Yuji Oshima and Yohei Shimasaki
Antioxidants 2024, 13(7), 781; https://doi.org/10.3390/antiox13070781 - 27 Jun 2024
Viewed by 459
Abstract
Diurnal rhythms in physiological functions contribute to homeostasis in many organisms. Although relationships between molecular biology and diurnal rhythms have been well studied in model organisms like higher plants, those in harmful algal bloom species are poorly understood. Here we measured several physiological [...] Read more.
Diurnal rhythms in physiological functions contribute to homeostasis in many organisms. Although relationships between molecular biology and diurnal rhythms have been well studied in model organisms like higher plants, those in harmful algal bloom species are poorly understood. Here we measured several physiological parameters and the expression patterns of photosynthesis-related and antioxidant-enzyme genes in the Chattonella marina complex to understand the biological meaning of diurnal rhythm. Under a light–dark cycle, Fv/Fm and expression of psbA, psbD, and 2-Cys prx showed significant increases in the light and decreases during the dark. These rhythms remained even under continuous dark conditions. DCMU suppressed the induction of psbA, psbD, and 2-Cys prx expression under both light regimes. Oxidative stress levels and H2O2 scavenging activities were relatively stable, and there was no significant correlation between H2O2 scavenging activities and antioxidant-enzyme gene expression. These results indicate that the Chattonella marina complex has developed mechanisms for efficient photosynthetic energy production in the light. Our results showed that this species has a diurnal rhythm and a biological clock. These phenomena are thought to contribute to the efficiency of physiological activities centered on photosynthesis and cell growth related to the diurnal vertical movement of this species. Full article
Show Figures

Figure 1

14 pages, 2457 KiB  
Article
Drought and Oxidative Stress in Flax (Linum usitatissimum L.) Entails Harnessing Non-Canonical Reference Gene for Precise Quantification of qRT-PCR Gene Expression
by Prasanta K. Dash, Rhitu Rai, Sharat Kumar Pradhan, Sheelavanta Matha Shivaraj, Rupesh Deshmukh, Rohini Sreevathsa and Nagendra K. Singh
Antioxidants 2023, 12(4), 950; https://doi.org/10.3390/antiox12040950 - 18 Apr 2023
Cited by 4 | Viewed by 1645
Abstract
Flax (Linum usitatissimum L.) is a self-pollinating, annual, diploid crop grown for multi-utility purposes for its quality oil, shining bast fiber, and industrial solvent. Being a cool (Rabi) season crop, it is affected by unprecedented climatic changes such as high temperature, drought, [...] Read more.
Flax (Linum usitatissimum L.) is a self-pollinating, annual, diploid crop grown for multi-utility purposes for its quality oil, shining bast fiber, and industrial solvent. Being a cool (Rabi) season crop, it is affected by unprecedented climatic changes such as high temperature, drought, and associated oxidative stress that, globally, impede its growth, production, and productivity. To precisely assess the imperative changes that are inflicted by drought and associated oxidative stress, gene expression profiling of predominant drought-responsive genes (AREB, DREB/CBF, and ARR) was carried out by qRT-PCR. Nevertheless, for normalization/quantification of data obtained from qRT-PCR results, a stable reference gene is mandatory. Here, we evaluated a panel of four reference genes (Actin, EF1a, ETIF5A, and UBQ) and assessed their suitability as stable reference genes for the normalization of gene expression data obtained during drought-induced oxidative stress in flax. Taking together, from the canonical expression of the proposed reference genes in three different genotypes, we report that EF1a as a stand-alone and EF1a and ETIF5A in tandem are suitable reference genes to be used for the real-time visualization of cellular impact of drought and oxidative stress on flax. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 920 KiB  
Review
Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity
by Barbara Mognetti, Francesco Franco, Chiara Castrignano, Patrizia Bovolin and Giovanni Nicolao Berta
Antioxidants 2024, 13(7), 782; https://doi.org/10.3390/antiox13070782 - 27 Jun 2024
Viewed by 483
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol [...] Read more.
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings. Full article
Show Figures

Figure 1

53 pages, 2991 KiB  
Review
Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis
by Natalia N. Rudenko, Daria V. Vetoshkina, Tatiana V. Marenkova and Maria M. Borisova-Mubarakshina
Antioxidants 2023, 12(11), 2014; https://doi.org/10.3390/antiox12112014 - 17 Nov 2023
Cited by 7 | Viewed by 2524
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the [...] Read more.
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed. Full article
Show Figures

Figure 1

Back to TopTop