Diagnosis, Pathogenesis and Treatment of CNS Tumors (2nd Edition)

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 829

Special Issue Editor

Special Issue Information

Dear Colleagues,

The current Classification of the Tumors of the Central Nervous System (CNS), published in 2021, not only incorporates histopathological features but also the molecular findings of some of the most common CNS tumors. In this context, the term ‘integrated diagnosis’ has been introduced, which refers to the combined use of these individual characteristics in the description of the final diagnosis.

Furthermore, several novel changes have affected both the nomenclature and grading of tumors. In particular, the former (i.e., terminology) is based on the recommendations of the 2019 cIMPACT-NOW Utrecht meeting, thus aiming to achieve better effectiveness and consistency. It also conforms with the HUGO Gene Nomenclature Committee (HGNC) system for gene symbols and names.

On the other hand, the recently developed grading system aims to comply with the one used for non-CNS neoplasms. More specifically, Roman numerals are replaced by Arabic numerals, which is similar to the grading of other organ systems. Additionally, grading is introduced within tumor types, which corresponds to a combined histological and molecular grading. As certain molecular markers have been found to correlate with prognosis, this fact has necessitated the inclusion of these markers in the lastly amended grading system.

All the above mentioned modifications in the fifth edition of the ‘blue book’ on CNS tumors will certainly have α substantial impact, directly on the simplification and harmonization of diagnostic procedures and indirectly on the development of more accurate and targeted therapeutic modalities. In addition, extended research on the identification of new molecular markers of diagnostic, therapeutic, and prognostic significance will further contribute to our understanding of the complex pathogenetic mechanisms behind the appearance of various CNS tumors.

This Special Issue aims to publish recent research papers on three important aspects of CNS tumors, namely diagnosis, pathogenesis, and treatment. Therefore, we welcome the submission of valuable research.

Prof. Dr. Dimitrios Kanakis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • CNS tumors
  • diagnosis
  • pathogenesis
  • treatment
  • prognosis
  • molecular markers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3749 KB  
Article
Synthesis, Characterization, and Anti-Glioblastoma Activity of Andrographolide–Iron Oxide Nanoparticles (AG-IONPs)
by Nanthini Ravi, Yazmin Bustami, Pandian Bothi Raja and Daruliza Kernain
Biomedicines 2025, 13(10), 2476; https://doi.org/10.3390/biomedicines13102476 - 11 Oct 2025
Viewed by 360
Abstract
Background: Glioblastoma multiforme (GBM) is an aggressive primary brain malignancy associated with poor prognosis and limited therapeutic options. Nanoparticle-based drug delivery systems provide a promising strategy to enhance treatment efficacy by circumventing barriers such as the blood–brain barrier. This study was conducted [...] Read more.
Background: Glioblastoma multiforme (GBM) is an aggressive primary brain malignancy associated with poor prognosis and limited therapeutic options. Nanoparticle-based drug delivery systems provide a promising strategy to enhance treatment efficacy by circumventing barriers such as the blood–brain barrier. This study was conducted to synthesize, characterize, and evaluate the in vitro anticancer potential of andrographolide–iron oxide nanoparticles (AG-IONPs) against GBM cells. Methods: Iron oxide nanoparticles (IONPs) were synthesized through co-precipitation and subsequently functionalized with andrographolide. Morphology, size, and surface charge were assessed by transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. Functionalization was confirmed by Fourier-transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy. Nanoparticle stability was monitored over three months. Cytotoxicity toward DBTRG-05MG cells was evaluated using MTT assays at 24, 48, and 72 h, while anti-migratory effects were determined using scratch-wound assays. Results: TEM analysis revealed nearly spherical IONPs (7.0 ± 0.15 nm) and AG-IONPs (13.5 ± 1.25 nm). DLS indicated an increased hydrodynamic diameter following functionalization, while zeta potential values decreased from +21.22 ± 1.58 mV to +8.68 ± 0.87 mV. The successful incorporation of andrographolide was confirmed by FTIR and UV–Vis spectra. AG-IONPs demonstrated excellent colloidal stability for up to three months. Cytotoxicity assays revealed a dose- and time-dependent decrease in cell viability, with LC50 values declining from 44.01 ± 3.23 μM (24 h) to 15.82 ± 2.30 μM (72 h). Scratch-wound assays further showed significant inhibition of cell migration relative to untreated controls. Conclusions: AG-IONPs exhibit favorable physicochemical properties, long-term stability, and potent anti-proliferative and anti-migratory effects against GBM cells in vitro. These findings support their potential as a multifunctional therapeutic platform, warranting further preclinical investigation. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Treatment of CNS Tumors (2nd Edition))
Show Figures

Figure 1

Back to TopTop