Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications 2.0

A special issue of Biomolecules (ISSN 2218-273X).

Deadline for manuscript submissions: closed (31 August 2022) | Viewed by 8887

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
Interests: plant in vitro technology; plant cell culture, elicitation of secondary metabolites; light; nutraceuticals; cosmeceuticals; phytochemicals; green synthesis; bioassays
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce the launch of the second edition of the Special Issue “Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Application” (https://www.mdpi.com/journal/biomolecules/special_issues/green_synthesis_nanoparticles).

Nanotechnology is an interdisciplinary area of research taking advantage of core techniques used in various disciplines like chemistry, engineering, physics and biological sciences, and leading to the development of novel strategies to manipulate minute particles resulting in the production of nanoparticles (NPs). These NPs may be defined as particles with at least one dimension ranging from 1–100 nm. Nanotechnology deals with the synthesis, development and applications of a variety of NPs. These NPs are generally produced via laborious and hazard-prone physical and chemical methods. According to the safety-by-design principle, during the last decade a large array of safe, facile, cost effective, reproducible and scalable green synthesis approaches of NPs have been developed. Among these green biological methods, plant-based biosynthesis of NPs is considered a gold technique due to easy availability and the diverse nature of plants. The potential of plant extracts to produce NPs that have definite size and shape, as well as composition, is of great importance. Moreover, the great diversity of phytochemicals readily available in plant extracts can be utilized in this green approach as the natural stabilizing and reducing agents for the biosynthesis of NPs. Plant-derived NPs are also prone to present less harmful side effects to the human population as compared to chemically synthesized NPs, and exhibit high biological potential with applications in various domains such as in agriculture (e.g. in precision farming with controlled release of agrochemicals, target-specific delivery of biomolecules, more efficient nutrients absorption, detection and control of plant diseases, etc.), in food science and technology (e.g. in processing, storage and packaging processes), in bioengineering (biocatalysts, photocatalysts, biosensors, etc.), in cosmetic (e.g. sunscreen, anti-aging, hair growth, bioactive compounds delivery, nanoemulsion, etc.) or in nanomedicine and human health protection (e.g. antimicrobial, antiparasitic, antiproliferative, pro-apoptotic, pro- or anti-oxidative depending on the context, anti-inflammatory activities, etc.). Recently, NPs have also emerged as a novel effective elicitor in plant in vitro systems with the ability to enhance the synthesis of bioactive secondary metabolites, thus further increasing the potential applications spectra of plant-based NPs.

We encourage investigators to consider submitting reviews, regular research papers and short communications to this Special Issue of Biomolecules aiming to highlight the most novel and promising developments in this field.

Dr. Christophe Hano
Dr. Bilal Haider Abbasi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • green synthesis
  • green biotechnology
  • biological activities
  • human health
  • pharmaceuticals
  • cosmeceuticals
  • food science and technology
  • precision agriculture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 3663 KiB  
Article
Bio-Assisted Synthesis and Characterization of Zinc Oxide Nanoparticles from Lepidium sativum and Their Potent Antioxidant, Antibacterial and Anticancer Activities
by Bisma Meer, Anisa Andleeb, Junaid Iqbal, Hajra Ashraf, Kushif Meer, Joham Sarfraz Ali, Samantha Drouet, Sumaira Anjum, Azra Mehmood, Taimoor Khan, Mohammad Ali, Christophe Hano and Bilal Haider Abbasi
Biomolecules 2022, 12(6), 855; https://doi.org/10.3390/biom12060855 - 20 Jun 2022
Cited by 31 | Viewed by 3903
Abstract
Nanotechnology is an emerging area of research that deals with the production, manipulation, and application of nanoscale materials. Bio-assisted synthesis is of particular interest nowadays, to overcome the limitations associated with the physical and chemical means. The aim of this study was to [...] Read more.
Nanotechnology is an emerging area of research that deals with the production, manipulation, and application of nanoscale materials. Bio-assisted synthesis is of particular interest nowadays, to overcome the limitations associated with the physical and chemical means. The aim of this study was to synthesize ZnO nanoparticles (NPs) for the first time, utilizing the seed extract of Lepidium sativum. The synthesized NPs were confirmed through various spectroscopy and imagining techniques, such as XRD, FTIR, HPLC, and SEM. The characterized NPs were then examined for various in vitro biological assays. Crystalline, hexagonal-structured NPs with an average particle size of 25.6 nm were obtained. Biosynthesized ZnO NPs exhibited potent antioxidant activities, effective α-amylase inhibition, moderate urease inhibition (56%), high lipase-inhibition (71%) activities, moderate cytotoxic potential, and significant antibacterial activity. Gene expression of caspase in HepG2 cells was enhanced along with elevated production of ROS/RNS, while membrane integrity was disturbed upon the exposure of NPs. Overall results indicated that bio-assisted ZnO NPs exhibit excellent biological potential and could be exploited for future biomedical applications. particularly in antimicrobial and cancer therapeutics. Moreover, this is the first comprehensive study on Lepidium sativum-mediated synthesis of ZnO nanoparticles and evaluation of their biological activities. Full article
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 1586 KiB  
Review
Implication of Nanoparticles to Combat Chronic Liver and Kidney Diseases: Progress and Perspectives
by Mariam Hashim, Huma Mujahid, Samina Hassan, Shanila Bukhari, Iram Anjum, Christophe Hano, Bilal Haider Abbasi and Sumaira Anjum
Biomolecules 2022, 12(10), 1337; https://doi.org/10.3390/biom12101337 - 21 Sep 2022
Cited by 12 | Viewed by 4285
Abstract
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, [...] Read more.
Liver and kidney diseases are the most frequently encountered problems around the globe. Damage to the liver and kidney may occur as a result of exposure to various drugs, chemicals, toxins, and pathogens, leading to severe disease conditions such as cirrhosis, fibrosis, hepatitis, acute kidney injury, and liver and renal failure. In this regard, the use of nanoparticles (NPs) such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), and zinc oxide nanoparticles (ZnONPs) has emerged as a rapidly developing field of study in terms of safe delivery of various medications to target organs with minimal side effects. Due to their physical characteristics, NPs have inherent pharmacological effects, and an accidental buildup can have a significant impact on the structure and function of the liver and kidney. By suppressing the expression of the proinflammatory cytokines iNOS and COX-2, NPs are known to possess anti-inflammatory effects. Additionally, NPs have demonstrated their ability to operate as an antioxidant, squelching the generation of ROS caused by substances that cause oxidative stress. Finally, because of their pro-oxidant properties, they are also known to increase the level of ROS, which causes malignant liver and kidney cells to undergo apoptosis. As a result, NPs can be regarded as a double-edged sword whose inherent therapeutic benefits can be refined as we work to comprehend them in terms of their toxicity. Full article
Show Figures

Figure 1

Back to TopTop