Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1619 KiB  
Review
Mechanisms Underlying the Action and Synergism of Trastuzumab and Pertuzumab in Targeting HER2-Positive Breast Cancer
by Babak Nami, Hamid Maadi and Zhixiang Wang
Cancers 2018, 10(10), 342; https://doi.org/10.3390/cancers10100342 - 20 Sep 2018
Cited by 108 | Viewed by 17750
Abstract
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20–30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use [...] Read more.
Human epidermal growth factor receptor (HER) 2 (HER2) is overexpressed in 20–30% of breast cancers. HER2 is a preferred target for treating HER2-positive breast cancer. Trastuzumab and pertuzumab are two HER2-targeted monoclonal antibodies approved by the Food and Drug Administration (FDA) to use as adjuvant therapy in combination with docetaxel to treat metastatic HER2-positive breast cancer. Adding the monoclonal antibodies to treatment regimen has changed the paradigm for treatment of HER2-positive breast cancer. Despite improving outcomes, the percentage of the patients who benefit from the treatment is still low. Continued research and development of novel agents and strategies of drug combinations is needed. A thorough understanding of the molecular mechanisms underlying the action and synergism of trastuzumab and pertuzumab is essential for moving forward to achieve high efficacy in treating HER2-positive breast cancer. This review examined and analyzed findings and hypotheses regarding the action and synergism of trastuzumab and pertuzumab and proposed a model of synergism based on available information. Full article
(This article belongs to the Collection Drug Resistance and Novel Therapies in Cancers)
Show Figures

Figure 1

18 pages, 4315 KiB  
Article
TRPC6 Channels Are Required for Proliferation, Migration and Invasion of Breast Cancer Cell Lines by Modulation of Orai1 and Orai3 Surface Exposure
by Isaac Jardin, Raquel Diez-Bello, Jose J. Lopez, Pedro C. Redondo, Ginés M. Salido, Tarik Smani and Juan A. Rosado
Cancers 2018, 10(9), 331; https://doi.org/10.3390/cancers10090331 - 14 Sep 2018
Cited by 66 | Viewed by 5457
Abstract
Transient receptor potential channels convey signaling information from a number of stimuli to a wide variety of cellular functions, mainly by inducing changes in cytosolic Ca2+ concentration. Different members of the TRPC, TRPM and TRPV subfamilies have been reported to play a [...] Read more.
Transient receptor potential channels convey signaling information from a number of stimuli to a wide variety of cellular functions, mainly by inducing changes in cytosolic Ca2+ concentration. Different members of the TRPC, TRPM and TRPV subfamilies have been reported to play a role in tumorigenesis. Here we show that the estrogen receptor positive and triple negative breast cancer cell lines, MCF7 and MDA-MB-231, respectively, exhibit enhanced expression of the TRPC6 channel as compared to the non-tumoral MCF10A cell line. In vitro TRPC6 knockdown using shRNA impaired MCF7 and MDA-MB-231 cell proliferation, migration and invasion detected by BrdU incorporation, wound healing and Boyden chamber assays, respectively. Using RNAi-mediated TRPC6 silencing as well as overexpression of the pore-dead dominant-negative TRPC6 mutant we have found that TRPC6 plays a relevant role in the activation of store-operated Ca2+ entry in the breast cancer cell lines but not in non-tumoral breast cells. Finally, we have found that TRPC6 interacts with Orai1 and Orai3 in MCF7 and MDA-MB-231 cells and is required for the translocation of Orai1 and Orai3 to the plasma membrane in MDA-MB-231 and MCF7 cells, respectively, upon Ca2+ store depletion. These findings introduce a novel mechanism for the modulation of Ca2+ influx and the development of different cancer hallmarks in breast cancer cells. Full article
(This article belongs to the Special Issue Ion Channels in Cancer)
Show Figures

Graphical abstract

17 pages, 1359 KiB  
Review
The Role of Signal Transducer and Activator of Transcription 3 (STAT3) and Its Targeted Inhibition in Hematological Malignancies
by Loukik Arora, Alan Prem Kumar, Frank Arfuso, Wee Joo Chng and Gautam Sethi
Cancers 2018, 10(9), 327; https://doi.org/10.3390/cancers10090327 - 13 Sep 2018
Cited by 101 | Viewed by 6700
Abstract
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT protein family, can be phosphorylated by receptor-associated Janus kinases (JAKs) in response to stimulation by cytokines and growth factors. It forms homo- or heterodimers that can translocate to the cell [...] Read more.
Signal transducer and activator of transcription 3 (STAT3), a member of the STAT protein family, can be phosphorylated by receptor-associated Janus kinases (JAKs) in response to stimulation by cytokines and growth factors. It forms homo- or heterodimers that can translocate to the cell nucleus where they act as transcription activators. Constitutive activation of STAT3 has been found to be associated with initiation and progression of various cancers. It can exert proliferative as well as anti-apoptotic effects. This review focuses on the role of STAT3 in pathogenesis i.e., proliferation, differentiation, migration, and apoptosis of hematological malignancies viz. leukemia, lymphoma and myeloma, and briefly highlights the potential therapeutic approaches developed against STAT3 activation pathway. Full article
Show Figures

Figure 1

20 pages, 687 KiB  
Review
The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship
by Maximilian Weniger, Kim C. Honselmann and Andrew S. Liss
Cancers 2018, 10(9), 316; https://doi.org/10.3390/cancers10090316 - 6 Sep 2018
Cited by 178 | Viewed by 11773
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extraordinarily dense fibrotic stroma that impedes tumor perfusion and delivery of anticancer drugs. Since the extracellular matrix (ECM) comprises the bulk of the stroma, it is primarily responsible for the increased interstitial tissue pressure and stiff mechanical [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has an extraordinarily dense fibrotic stroma that impedes tumor perfusion and delivery of anticancer drugs. Since the extracellular matrix (ECM) comprises the bulk of the stroma, it is primarily responsible for the increased interstitial tissue pressure and stiff mechanical properties of the stroma. Besides its mechanical influence, the ECM provides important biochemical and physical cues that promote survival, proliferation, and metastasis. By serving as a nutritional source, the ECM also enables PDAC cells to survive under the nutrient-poor conditions. While therapeutic strategies using stroma-depleting drugs have yielded disappointing results, an increasing body of research indicates the ECM may offer a variety of potential therapeutic targets. As preclinical studies of ECM-targeted drugs have shown promising effects, a number of clinical trials are currently investigating agents with the potential to advance the future treatment of PDAC. Thus, the present review seeks to give an overview of the complex relationship between the ECM and PDAC. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
Show Figures

Figure 1

18 pages, 2441 KiB  
Review
The p53 Pathway in Glioblastoma
by Ying Zhang, Collin Dube, Myron Gibert, Nichola Cruickshanks, Baomin Wang, Maeve Coughlan, Yanzhi Yang, Initha Setiady, Ciana Deveau, Karim Saoud, Cassandra Grello, Madison Oxford, Fang Yuan and Roger Abounader
Cancers 2018, 10(9), 297; https://doi.org/10.3390/cancers10090297 - 1 Sep 2018
Cited by 219 | Viewed by 13995
Abstract
The tumor suppressor and transcription factor p53 plays critical roles in tumor prevention by orchestrating a wide variety of cellular responses, including damaged cell apoptosis, maintenance of genomic stability, inhibition of angiogenesis, and regulation of cell metabolism and tumor microenvironment. TP53 is one [...] Read more.
The tumor suppressor and transcription factor p53 plays critical roles in tumor prevention by orchestrating a wide variety of cellular responses, including damaged cell apoptosis, maintenance of genomic stability, inhibition of angiogenesis, and regulation of cell metabolism and tumor microenvironment. TP53 is one of the most commonly deregulated genes in cancer. The p53-ARF-MDM2 pathway is deregulated in 84% of glioblastoma (GBM) patients and 94% of GBM cell lines. Deregulated p53 pathway components have been implicated in GBM cell invasion, migration, proliferation, evasion of apoptosis, and cancer cell stemness. These pathway components are also regulated by various microRNAs and long non-coding RNAs. TP53 mutations in GBM are mostly point mutations that lead to a high expression of a gain of function (GOF) oncogenic variants of the p53 protein. These relatively understudied GOF p53 mutants promote GBM malignancy, possibly by acting as transcription factors on a set of genes other than those regulated by wild type p53. Their expression correlates with worse prognosis, highlighting their potential importance as markers and targets for GBM therapy. Understanding mutant p53 functions led to the development of novel approaches to restore p53 activity or promote mutant p53 degradation for future GBM therapies. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

21 pages, 1304 KiB  
Review
Rare Genetic Diseases with Defects in DNA Repair: Opportunities and Challenges in Orphan Drug Development for Targeted Cancer Therapy
by Sonali Bhattacharjee and Saikat Nandi
Cancers 2018, 10(9), 298; https://doi.org/10.3390/cancers10090298 - 1 Sep 2018
Cited by 34 | Viewed by 8361
Abstract
A better understanding of mechanistic insights into genes and enzymes implicated in rare diseases provide a unique opportunity for orphan drug development. Advances made in identification of synthetic lethal relationships between rare disorder genes with oncogenes and tumor suppressor genes have brought in [...] Read more.
A better understanding of mechanistic insights into genes and enzymes implicated in rare diseases provide a unique opportunity for orphan drug development. Advances made in identification of synthetic lethal relationships between rare disorder genes with oncogenes and tumor suppressor genes have brought in new anticancer therapeutic opportunities. Additionally, the rapid development of small molecule inhibitors against enzymes that participate in DNA damage response and repair has been a successful strategy for targeted cancer therapeutics. Here, we discuss the recent advances in our understanding of how many rare disease genes participate in promoting genome stability. We also summarize the latest developments in exploiting rare diseases to uncover new biological mechanisms and identify new synthetic lethal interactions for anticancer drug discovery that are in various stages of preclinical and clinical studies. Full article
Show Figures

Figure 1

19 pages, 1889 KiB  
Review
p53 Isoforms and Their Implications in Cancer
by Maximilian Vieler and Suparna Sanyal
Cancers 2018, 10(9), 288; https://doi.org/10.3390/cancers10090288 - 25 Aug 2018
Cited by 88 | Viewed by 10387
Abstract
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, [...] Read more.
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Graphical abstract

14 pages, 2577 KiB  
Article
miR-1246 Targets CCNG2 to Enhance Cancer Stemness and Chemoresistance in Oral Carcinomas
by Shih-Shen Lin, Chih-Yu Peng, Yi-Wen Liao, Ming-Yung Chou, Pei-Ling Hsieh and Cheng-Chia Yu
Cancers 2018, 10(8), 272; https://doi.org/10.3390/cancers10080272 - 16 Aug 2018
Cited by 57 | Viewed by 4963
Abstract
MiRNAs have been recognized as crucial components in carcinogenesis, but whether miR-1246 affects the cancer stemness and drug resistance in oral squamous cell carcinoma (OSCC) has not been fully understood and its downstream targets still need to be unraveled. In the present work, [...] Read more.
MiRNAs have been recognized as crucial components in carcinogenesis, but whether miR-1246 affects the cancer stemness and drug resistance in oral squamous cell carcinoma (OSCC) has not been fully understood and its downstream targets still need to be unraveled. In the present work, we employed miRNAs RT-PCR analysis to evaluate the expression of miR-1246 in tumor tissues and oral cancer stem cells (OCSC). Stemness phenotypes, including self-renewal, migration, invasion, colony formation capacities, and in vivo oncogenicity of oral cancer cells following transfected with miR-1246 inhibitors or mimics were examined. Our results suggested that the expression level of miR-1246 was significantly upregulated in the tumor tissues and OCSC. Kaplan-Meier survival analysis of OSCC patients with high levels of miR-1246 had the worst survival rate compared to their low-expression counterparts. Inhibition of miR-1246 in OCSC significantly reduced the stemness hallmarks, while overexpression of miR-1246 enhanced these characteristics. Moreover, we showed that downregulation of miR-1246 decreased chemoresistance. In addition, we verified that miR-1246-inhibited CCNG2 contributed to the cancer stemness of OSCC. These results demonstrated the significance of miR-1246 in the regulation of OSCC stemness. Targeting miR-1246-CCNG2 axis may be beneficial to suppress cancer relapse and metastasis in OSCC patients. Full article
(This article belongs to the Special Issue Cancer Chemoresistance)
Show Figures

Figure 1

11 pages, 257 KiB  
Review
The Role of Direct Oral Anticoagulants in Treatment of Cancer-Associated Thrombosis
by Hanny Al-Samkari and Jean M. Connors
Cancers 2018, 10(8), 271; https://doi.org/10.3390/cancers10080271 - 15 Aug 2018
Cited by 32 | Viewed by 5884
Abstract
Venous thromboembolism (VTE) complicates the clinical course of approximately 5–10% of all cancer patients. Anticoagulation of the cancer patient often presents unique challenges as these patients have both a higher risk of recurrent VTE and a higher risk of bleeding than patients without [...] Read more.
Venous thromboembolism (VTE) complicates the clinical course of approximately 5–10% of all cancer patients. Anticoagulation of the cancer patient often presents unique challenges as these patients have both a higher risk of recurrent VTE and a higher risk of bleeding than patients without cancer. Although low molecular weight heparins (LMWH) are the standard of care for the management of cancer-associated VTE, their use requires once or twice daily subcutaneous injections, which can be a significant burden for many cancer patients who often require a long duration of anticoagulation. The direct oral anticoagulants (DOACs) are attractive options for patients with malignancy. DOACs offer immediate onset of action and short half-lives, properties similar to LMWH, but the oral route of administration is a significant advantage. Given the higher risks of recurrent VTE and bleeding, there has been concern about the efficacy and safety of DOACs in this patient population. Data are now emerging for the use of DOACs in the cancer patient population from dedicated clinical trials. While recently published data suggest that DOACs hold promise for the treatment of cancer associated VTE, additional studies are needed to establish DOACs as the standard-of-care treatment. Many such studies are currently underway. The available data for the use of DOACs in the treatment of cancer-associated VTE will be reviewed, focusing on efficacy, safety, and other considerations relevant to the cancer patient. Full article
(This article belongs to the Special Issue The Role of Thrombosis and Haemostasis in Cancer)
22 pages, 735 KiB  
Review
Circular RNAs: Characteristics, Function and Clinical Significance in Hepatocellular Carcinoma
by Man Wang, Fei Yu and Peifeng Li
Cancers 2018, 10(8), 258; https://doi.org/10.3390/cancers10080258 - 2 Aug 2018
Cited by 101 | Viewed by 6371
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Moreover, the five-year survival rate of HCC patients remains poor due to high frequency [...] Read more.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Moreover, the five-year survival rate of HCC patients remains poor due to high frequency of tumor metastasis and recurrence. These challenges give rise to the emergent need to discover promising biomarkers for HCC diagnosis and identify novel targets for HCC therapy. Circular RNAs (circRNAs), a class of long-overlook non-coding RNA, have been revealed as multi-functional RNAs in recent years. Growing evidence indicates that circRNA expression alterations have a broad impact in biological characteristics of HCC. Most of these circRNAs regulate HCC progression by acting as miRNA sponges, suggesting that circRNAs may function as promising diagnostic biomarkers and ideal therapeutic targets for HCC. In this review, we summarize the current progress in studying the functional role of circRNAs in HCC pathogenesis and present their potential values as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of circRNAs in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC. Full article
(This article belongs to the Special Issue Cancer Biomarkers)
Show Figures

Graphical abstract

14 pages, 1128 KiB  
Review
Role of Pseudogenes in Tumorigenesis
by Xinling Hu, Liu Yang and Yin-Yuan Mo
Cancers 2018, 10(8), 256; https://doi.org/10.3390/cancers10080256 - 1 Aug 2018
Cited by 72 | Viewed by 7308
Abstract
Functional genomics has provided evidence that the human genome transcribes a large number of non-coding genes in addition to protein-coding genes, including microRNAs and long non-coding RNAs (lncRNAs). Among the group of lncRNAs are pseudogenes that have not been paid attention in the [...] Read more.
Functional genomics has provided evidence that the human genome transcribes a large number of non-coding genes in addition to protein-coding genes, including microRNAs and long non-coding RNAs (lncRNAs). Among the group of lncRNAs are pseudogenes that have not been paid attention in the past, compared to other members of lncRNAs. However, increasing evidence points the important role of pseudogenes in diverse cellular functions, and dysregulation of pseudogenes are often associated with various human diseases including cancer. Like other types of lncRNAs, pseudogenes can also function as master regulators for gene expression and thus, they can play a critical role in various aspects of tumorigenesis. In this review we discuss the latest developments in pseudogene research, focusing on how pseudogenes impact tumorigenesis through different gene regulation mechanisms. Given the high sequence homology with the corresponding parent genes, we also discuss challenges for pseudogene research. Full article
Show Figures

Figure 1

30 pages, 1378 KiB  
Review
The Role of Inflammation and Inflammatory Mediators in the Development, Progression, Metastasis, and Chemoresistance of Epithelial Ovarian Cancer
by Sudha S. Savant, Shruthi Sriramkumar and Heather M. O’Hagan
Cancers 2018, 10(8), 251; https://doi.org/10.3390/cancers10080251 - 30 Jul 2018
Cited by 111 | Viewed by 10384
Abstract
Inflammation plays a role in the initiation and development of many types of cancers, including epithelial ovarian cancer (EOC) and high grade serous ovarian cancer (HGSC), a type of EOC. There are connections between EOC and both peritoneal and ovulation-induced inflammation. Additionally, EOCs [...] Read more.
Inflammation plays a role in the initiation and development of many types of cancers, including epithelial ovarian cancer (EOC) and high grade serous ovarian cancer (HGSC), a type of EOC. There are connections between EOC and both peritoneal and ovulation-induced inflammation. Additionally, EOCs have an inflammatory component that contributes to their progression. At sites of inflammation, epithelial cells are exposed to increased levels of inflammatory mediators such as reactive oxygen species, cytokines, prostaglandins, and growth factors that contribute to increased cell division, and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the pro-inflammatory tumor microenvironment environment (TME) contributes to EOC metastasis and chemoresistance. In this review we will discuss the roles inflammation and inflammatory mediators play in the development, progression, metastasis, and chemoresistance of EOC. Full article
(This article belongs to the Special Issue The Tumor Microenvironment of High Grade Serous Ovarian Cancer)
Show Figures

Figure 1

12 pages, 1945 KiB  
Article
Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer
by Ahmad Chaddad, Michael J Kucharczyk and Tamim Niazi
Cancers 2018, 10(8), 249; https://doi.org/10.3390/cancers10080249 - 28 Jul 2018
Cited by 89 | Viewed by 7488
Abstract
Background: Novel radiomic features are enabling the extraction of biological data from routine sequences of MRI images. This study’s purpose was to establish a new model, based on the joint intensity matrix (JIM), to predict the Gleason score (GS) of prostate cancer (PCa) [...] Read more.
Background: Novel radiomic features are enabling the extraction of biological data from routine sequences of MRI images. This study’s purpose was to establish a new model, based on the joint intensity matrix (JIM), to predict the Gleason score (GS) of prostate cancer (PCa) patients. Methods: A retrospective dataset comprised of the diagnostic imaging data of 99 PCa patients was used, extracted from The Cancer Imaging Archive’s (TCIA) T2-Weighted (T2-WI) and apparent diffusion coefficient (ADC) images. Radiomic features derived from JIM and the grey level co-occurrence matrix (GLCM) were extracted from the reported tumor locations. The Kruskal-Wallis test and Spearman’s rank correlation identified features related to the GS. The Random Forest classifier model was implemented to identify the best performing signature of JIM and GLCM radiomic features to predict for GS. Results: Five JIM-derived features: contrast, homogeneity, difference variance, dissimilarity, and inverse difference were independent predictors of GS (p < 0.05). Combined JIM and GLCM analysis provided the best performing area-under-the-curve, with values of 78.40% for GS ≤ 6, 82.35% for GS = 3 + 4, and 64.76% for GS ≥ 4 + 3. Conclusion: This retrospective study produced a novel predictive model for GS by the incorporation of JIM data from standard diagnostic MRI images. Full article
(This article belongs to the Special Issue Cancer Biomarkers)
Show Figures

Figure 1

81 pages, 2255 KiB  
Review
Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells
by Ugo Testa, Germana Castelli and Elvira Pelosi
Cancers 2018, 10(8), 248; https://doi.org/10.3390/cancers10080248 - 27 Jul 2018
Cited by 252 | Viewed by 14894
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at [...] Read more.
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity. Full article
Show Figures

Figure 1

23 pages, 3120 KiB  
Review
Can Stemness and Chemoresistance Be Therapeutically Targeted via Signaling Pathways in Ovarian Cancer?
by Lynn Roy and Karen D. Cowden Dahl
Cancers 2018, 10(8), 241; https://doi.org/10.3390/cancers10080241 - 24 Jul 2018
Cited by 54 | Viewed by 5852
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Poor overall survival, particularly for patients with high grade serous (HGS) ovarian cancer, is often attributed to late stage at diagnosis and relapse following chemotherapy. HGS ovarian cancer is a heterogenous disease in that few [...] Read more.
Ovarian cancer is the most lethal gynecological malignancy. Poor overall survival, particularly for patients with high grade serous (HGS) ovarian cancer, is often attributed to late stage at diagnosis and relapse following chemotherapy. HGS ovarian cancer is a heterogenous disease in that few genes are consistently mutated between patients. Additionally, HGS ovarian cancer is characterized by high genomic instability. For these reasons, personalized approaches may be necessary for effective treatment and cure. Understanding the molecular mechanisms that contribute to tumor metastasis and chemoresistance are essential to improve survival rates. One favored model for tumor metastasis and chemoresistance is the cancer stem cell (CSC) model. CSCs are cells with enhanced self-renewal properties that are enriched following chemotherapy. Elimination of this cell population is thought to be a mechanism to increase therapeutic response. Therefore, accurate identification of stem cell populations that are most clinically relevant is necessary. While many CSC identifiers (ALDH, OCT4, CD133, and side population) have been established, it is still not clear which population(s) will be most beneficial to target in patients. Therefore, there is a critical need to characterize CSCs with reliable markers and find their weaknesses that will make the CSCs amenable to therapy. Many signaling pathways are implicated for their roles in CSC initiation and maintenance. Therapeutically targeting pathways needed for CSC initiation or maintenance may be an effective way of treating HGS ovarian cancer patients. In conclusion, the prognosis for HGS ovarian cancer may be improved by combining CSC phenotyping with targeted therapies for pathways involved in CSC maintenance. Full article
(This article belongs to the Special Issue The Tumor Microenvironment of High Grade Serous Ovarian Cancer)
Show Figures

Figure 1

29 pages, 3478 KiB  
Review
The Tumor Microenvironment of Epithelial Ovarian Cancer and Its Influence on Response to Immunotherapy
by Galaxia M. Rodriguez, Kristianne J. C. Galpin, Curtis W. McCloskey and Barbara C. Vanderhyden
Cancers 2018, 10(8), 242; https://doi.org/10.3390/cancers10080242 - 24 Jul 2018
Cited by 94 | Viewed by 9252
Abstract
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells [...] Read more.
Immunotherapy as a treatment for cancer is a growing field of endeavor but reports of success have been limited for epithelial ovarian cancer. Overcoming the challenges to developing more effective therapeutic approaches lies in a better understanding of the factors in cancer cells and the surrounding tumor microenvironment that limit response to immunotherapies. This article provides an overview of some ovarian cancer cell features such as tumor-associated antigens, ovarian cancer-derived exosomes, tumor mutational burden and overexpression of immunoinhibitory molecules. Moreover, we describe relevant cell types found in epithelial ovarian tumors including immune cells (T and B lymphocytes, Tregs, NK cells, TAMs, MDSCs) and other components found in the tumor microenvironment including fibroblasts and the adipocytes in the omentum. We focus on how those components may influence responses to standard treatments or immunotherapies. Full article
(This article belongs to the Special Issue The Tumor Microenvironment of High Grade Serous Ovarian Cancer)
Show Figures

Figure 1

14 pages, 1590 KiB  
Review
Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy
by Nemany A. N. Hanafy, Maged El-Kemary and Stefano Leporatti
Cancers 2018, 10(7), 238; https://doi.org/10.3390/cancers10070238 - 20 Jul 2018
Cited by 185 | Viewed by 8908
Abstract
Micelles as colloidal suspension have attracted considerable attention due to their potential use for both cancer diagnosis and therapy. These structures have proven their ability to deliver poorly water-soluble anticancer drugs, improve drug stability, and have good penetration and site-specificity, leading to enhance [...] Read more.
Micelles as colloidal suspension have attracted considerable attention due to their potential use for both cancer diagnosis and therapy. These structures have proven their ability to deliver poorly water-soluble anticancer drugs, improve drug stability, and have good penetration and site-specificity, leading to enhance therapeutic efficacy. Micelles are composed of hydrophobic and hydrophilic components assembled into nanosized spherical, ellipsoid, cylindrical, or unilamellar structures. For their simple formation, they are widely studied, either by using opposite polymers attachment consisting of two or more block copolymers, or by using fatty acid molecules that can modify themselves in a rounded shape. Recently, hybrid and responsive stimuli nanomicelles are formed either by integration with metal nanoparticles such as silver, gold, iron oxide nanoparticles inside micelles or by a combination of lipids and polymers into single composite. Herein, through this special issue, an updated overview of micelles development and their application for cancer therapy will be discussed. Full article
(This article belongs to the Special Issue Nanotechnology and Cancer)
Show Figures

Scheme 1

17 pages, 1665 KiB  
Review
Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance
by Zachary Schrank, Gagan Chhabra, Leo Lin, Tsatsral Iderzorig, Chike Osude, Nabiha Khan, Adijan Kuckovic, Sanjana Singh, Rachel J. Miller and Neelu Puri
Cancers 2018, 10(7), 224; https://doi.org/10.3390/cancers10070224 - 4 Jul 2018
Cited by 89 | Viewed by 11487
Abstract
Lung cancer is treated with many conventional therapies, such as surgery, radiation, and chemotherapy. However, these therapies have multiple undesirable side effects. To bypass the side effects elicited by these conventional treatments, molecularly-targeted therapies are currently in use or under development. Current molecularly-targeted [...] Read more.
Lung cancer is treated with many conventional therapies, such as surgery, radiation, and chemotherapy. However, these therapies have multiple undesirable side effects. To bypass the side effects elicited by these conventional treatments, molecularly-targeted therapies are currently in use or under development. Current molecularly-targeted therapies effectively target specific biomarkers, which are commonly overexpressed in lung cancers and can cause increased tumorigenicity. Unfortunately, several molecularly-targeted therapies are associated with initial dramatic responses followed by acquired resistance due to spontaneous mutations or activation of signaling pathways. Acquired resistance to molecularly targeted therapies presents a major clinical challenge in the treatment of lung cancer. Therefore, to address this clinical challenge and to improve lung cancer patient prognosis, we need to understand the mechanism of acquired resistance to current therapies and develop additional novel therapies. This review concentrates on various lung cancer biomarkers, including EGFR, ALK, and BRAF, as well as their potential mechanisms of drug resistance. Full article
(This article belongs to the Special Issue Recent Advances in Non-Small Cell Lung Cancer)
Show Figures

Figure 1

16 pages, 584 KiB  
Review
Radiation Pneumonitis: Old Problem, New Tricks
by Varsha Jain and Abigail T. Berman
Cancers 2018, 10(7), 222; https://doi.org/10.3390/cancers10070222 - 3 Jul 2018
Cited by 104 | Viewed by 8522
Abstract
Radiation therapy is a major treatment modality for management of non-small cell lung cancer. Radiation pneumonitis is a dose limiting toxicity of radiotherapy, affecting its therapeutic ratio. This review presents patient and treatment related factors associated with the development of radiation pneumonitis. Research [...] Read more.
Radiation therapy is a major treatment modality for management of non-small cell lung cancer. Radiation pneumonitis is a dose limiting toxicity of radiotherapy, affecting its therapeutic ratio. This review presents patient and treatment related factors associated with the development of radiation pneumonitis. Research focusing on reducing the incidence of radiation pneumonitis by using information about lung ventilation, imaging-based biomarkers as well as normal tissue complication models is discussed. Recent advances in our understanding of molecular mechanisms underlying lung injury has led to the development of several targeted interventions, which are also explored in this review. Full article
(This article belongs to the Special Issue Recent Advances in Non-Small Cell Lung Cancer)
Show Figures

Figure 1

18 pages, 4800 KiB  
Review
The Osteoclast in Bone Metastasis: Player and Target
by Antonio Maurizi and Nadia Rucci
Cancers 2018, 10(7), 218; https://doi.org/10.3390/cancers10070218 - 27 Jun 2018
Cited by 119 | Viewed by 10510
Abstract
Bone metastases are frequently the final fate of breast and prostate cancer patients. According to the definition of metastasis as an incurable disease, to date there are no effective treatments for tumor-associated bone metastases and this represents a real challenge for the researchers [...] Read more.
Bone metastases are frequently the final fate of breast and prostate cancer patients. According to the definition of metastasis as an incurable disease, to date there are no effective treatments for tumor-associated bone metastases and this represents a real challenge for the researchers in the field. The bone is a heterogeneous environment that represents a fertile soil for tumor cells, supporting their growth. Among the different cell types present in the bone, in this review we will focus our attention on the osteoclasts, which are crucial players in the so called “vicious cycle”, a phenomenon triggered by tumor cells eventually leading to both tumor proliferation as well as bone deregulation, thus fueling the development of bone metastasis. The complex network, linking tumor cells to the bone by activating osteoclasts, represents a fruitful target for the treatment of bone metastases. In this review we will describe how tumor cells perturb the bone microenvironment by actively influencing osteoclast formation and activity. Moreover, we will describe the current antiresorptive drugs employed in the treatment of bone metastases as well as new, targeted therapies able to affect both cancer cells and osteoclasts. Full article
(This article belongs to the Special Issue Targeting Bone Metastasis in Cancer)
Show Figures

Figure 1

13 pages, 748 KiB  
Review
Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression
by Ikuno Uehara and Nobuyuki Tanaka
Cancers 2018, 10(7), 219; https://doi.org/10.3390/cancers10070219 - 27 Jun 2018
Cited by 79 | Viewed by 7943
Abstract
p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism. Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation and tissue remodeling, is important [...] Read more.
p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism. Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation and tissue remodeling, is important for cancer proliferation, metastasis, and maintenance of cancer stem cells (CSCs) that self-renew and generate the diverse cells comprising the tumor. Furthermore, p53 has been demonstrated to inhibit inflammatory responses, and functional loss of p53 causes excessive inflammatory reactions. Moreover, the generation and maintenance of CSCs are supported by the inflammatory tumor microenvironment. Considering that the functions of p53 inhibit reprogramming of somatic cells to stem cells, p53 may have a major role in the inflammatory microenvironment as a tumor suppressor. Here, we review our current understanding of the mechanisms underlying the roles of p53 in regulation of the inflammatory microenvironment, tumor microenvironment, and tumor suppression. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

14 pages, 1587 KiB  
Review
Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers
by Maria Lina Tornesello, Clorinda Annunziata, Anna Lucia Tornesello, Luigi Buonaguro and Franco Maria Buonaguro
Cancers 2018, 10(7), 213; https://doi.org/10.3390/cancers10070213 - 22 Jun 2018
Cited by 60 | Viewed by 11378
Abstract
Viral oncogenesis is a multistep process largely depending on the complex interplay between viruses and host factors. The oncoviruses are capable of subverting the cell signaling machinery and metabolic pathways and exploit them for infection, replication, and persistence. Several viral oncoproteins are able [...] Read more.
Viral oncogenesis is a multistep process largely depending on the complex interplay between viruses and host factors. The oncoviruses are capable of subverting the cell signaling machinery and metabolic pathways and exploit them for infection, replication, and persistence. Several viral oncoproteins are able to functionally inactivate the tumor suppressor p53, causing deregulated expression of many genes orchestrated by p53, such as those involved in apoptosis, DNA stability, and cell proliferation. The Epstein–Barr virus (EBV) BZLF1, the high-risk human papillomavirus (HPV) E6, and the hepatitis C virus (HCV) NS5 proteins have shown to directly bind to and degrade p53. The hepatitis B virus (HBV) HBx and the human T cell lymphotropic virus-1 (HTLV-1) Tax proteins inhibit p53 activity through the modulation of p300/CBP nuclear factors, while the Kaposi’s sarcoma herpesvirus (HHV8) LANA, vIRF-1 and vIRF-3 proteins have been shown to destabilize the oncosuppressor, causing a decrease in its levels in the infected cells. The large T antigen of the Merkel cell polyomavirus (MCPyV) does not bind to p53 but significantly reduces p53-dependent transcription. This review describes the main molecular mechanisms involved in the interaction between viral oncoproteins and p53-related pathways as well as in the development of therapeutic strategies targeting such interactions. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Graphical abstract

19 pages, 1433 KiB  
Review
Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities
by Emily Rodrigues and Matthew S. Macauley
Cancers 2018, 10(6), 207; https://doi.org/10.3390/cancers10060207 - 18 Jun 2018
Cited by 138 | Viewed by 9821
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional [...] Read more.
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer. Full article
(This article belongs to the Special Issue Inflammation and Cancer)
Show Figures

Figure 1

39 pages, 4806 KiB  
Review
Designer Oncolytic Adenovirus: Coming of Age
by Alexander T. Baker, Carmen Aguirre-Hernández, Gunnel Halldén and Alan L. Parker
Cancers 2018, 10(6), 201; https://doi.org/10.3390/cancers10060201 - 14 Jun 2018
Cited by 64 | Viewed by 12610
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with [...] Read more.
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality. Full article
(This article belongs to the Special Issue Oncolytic Virotherapy)
Show Figures

Figure 1

21 pages, 950 KiB  
Review
TGF-β in T Cell Biology: Implications for Cancer Immunotherapy
by Amina Dahmani and Jean-Sébastien Delisle
Cancers 2018, 10(6), 194; https://doi.org/10.3390/cancers10060194 - 11 Jun 2018
Cited by 125 | Viewed by 12637
Abstract
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T [...] Read more.
Transforming Growth Factor beta (TGF-β) is a pleiotropic cytokine produced in large amounts within cancer microenvironments that will ultimately promote neoplastic progression, notably by suppressing the host’s T-cell immunosurveillance. This effect is mostly due to the well-known inhibitory effect of TGF-β on T cell proliferation, activation, and effector functions. Moreover, TGF-β subverts T cell immunity by favoring regulatory T-cell differentiation, further reinforcing immunosuppression within tumor microenvironments. These findings stimulated the development of many strategies to block TGF-β or its signaling pathways, either as monotherapy or in combination with other therapies, to restore anti-cancer immunity. Paradoxically, recent studies provided evidence that TGF-β can also promote differentiation of certain inflammatory populations of T cells, such as Th17, Th9, and resident-memory T cells (Trm), which have been associated with improved tumor control in several models. Here, we review current advances in our understanding of the many roles of TGF-β in T cell biology in the context of tumor immunity and discuss the possibility to manipulate TGF-β signaling to improve cancer immunotherapy. Full article
(This article belongs to the Special Issue TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

16 pages, 424 KiB  
Review
Gain-of-Function (GOF) Mutant p53 as Actionable Therapeutic Target
by Ramona Schulz-Heddergott and Ute M. Moll
Cancers 2018, 10(6), 188; https://doi.org/10.3390/cancers10060188 - 7 Jun 2018
Cited by 83 | Viewed by 8499
Abstract
p53 missense mutant alleles are present in nearly 40% of all human tumors. Such mutated alleles generate aberrant proteins that not only lose their tumor-suppressive functions but also frequently act as driver oncogenes, which promote malignant progression, invasion, metastasis, and chemoresistance, leading to [...] Read more.
p53 missense mutant alleles are present in nearly 40% of all human tumors. Such mutated alleles generate aberrant proteins that not only lose their tumor-suppressive functions but also frequently act as driver oncogenes, which promote malignant progression, invasion, metastasis, and chemoresistance, leading to reduced survival in patients and mice. Notably, these oncogenic gain-of-function (GOF) missense mutant p53 proteins (mutp53) are constitutively and tumor-specific stabilised. This stabilisation is one key pre-requisite for their GOF and is largely due to mutp53 protection from the E3 ubiquitin ligases Mdm2 and CHIP by the HSP90/HDAC6 chaperone machinery. Recent mouse models provide convincing evidence that tumors with highly stabilized GOF mutp53 proteins depend on them for growth, maintenance, and metastasis, thus creating exploitable tumor-specific vulnerabilities that markedly increase lifespan if intercepted. This identifies mutp53 as a promising cancer-specific drug target. This review discusses direct mutp53 protein-targeting drug strategies that are currently being developed at various preclinical levels. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

17 pages, 1227 KiB  
Review
Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis
by Katsunori Yoshida, Koichi Matsuzaki, Miki Murata, Takashi Yamaguchi, Kanehiko Suwa and Kazuichi Okazaki
Cancers 2018, 10(6), 183; https://doi.org/10.3390/cancers10060183 - 5 Jun 2018
Cited by 60 | Viewed by 8034
Abstract
Chronic viral hepatitis is a global public health problem, with approximately 570 million persons chronically infected. Hepatitis B and C viruses increase the risk of morbidity and mortality from liver cirrhosis, hepatocellular carcinoma (HCC), and extrahepatic complications that develop. Hepatitis virus infection induces [...] Read more.
Chronic viral hepatitis is a global public health problem, with approximately 570 million persons chronically infected. Hepatitis B and C viruses increase the risk of morbidity and mortality from liver cirrhosis, hepatocellular carcinoma (HCC), and extrahepatic complications that develop. Hepatitis virus infection induces transforming growth factor (TGF)-β, which influences microenvironments within the infected liver. TGF-β promotes liver fibrosis by up-regulating extracellular matrix production by hepatic stellate cells. TGF-β is also up-regulated in patients with HCC, in whom it contributes importantly to bringing about a favorable microenvironment for tumor growth. Thus, TGF-β is thought to be a major factor regulating liver fibrosis and carcinogenesis. Since TGF-β carries out regulatory signaling by influencing the phosphorylation of Smads, we have generated several kinds of phospho-specific antibodies to Smad2/3. Using these, we have identified three types of phospohorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L), and dually phosphorylated Smad3 (pSmad2L/C and pSmad3L/C). TGF-β-mediated pSmad2/3C signaling terminates cell proliferation; on the other hand, cytokine-induced pSmad3L signaling accelerates cell proliferation and promotes fibrogenesis. This review addresses TGF-β/Smad signal transduction in chronic liver injuries and carcinogenic processes. We also discuss the reversibility of Smad signaling after antiviral therapy. Full article
(This article belongs to the Special Issue TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

14 pages, 1308 KiB  
Review
Cutting to the Chase: How Matrix Metalloproteinase-2 Activity Controls Breast-Cancer-to-Bone Metastasis
by Marilena Tauro and Conor C. Lynch
Cancers 2018, 10(6), 185; https://doi.org/10.3390/cancers10060185 - 5 Jun 2018
Cited by 53 | Viewed by 7630
Abstract
Bone metastatic breast cancer is currently incurable and will be evident in more than 70% of patients that succumb to the disease. Understanding the factors that contribute to the progression and metastasis of breast cancer can reveal therapeutic opportunities. Matrix metalloproteinases (MMPs) are [...] Read more.
Bone metastatic breast cancer is currently incurable and will be evident in more than 70% of patients that succumb to the disease. Understanding the factors that contribute to the progression and metastasis of breast cancer can reveal therapeutic opportunities. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes whose role in cancer has been widely documented. They are capable of contributing to every step of the metastatic cascade, but enthusiasm for the use of MMP inhibition as a therapeutic approach has been dampened by the disappointing results of clinical trials conducted more than 20 years ago. Since the trials, our knowledge of MMP biology has expanded greatly. Combined with advances in the selective targeting of individual MMPs and the specific delivery of therapeutics to the tumor microenvironment, we may be on the verge of finally realizing the promise of MMP inhibition as a treatment strategy. Here, as a case in point, we focus specifically on MMP-2 as an example to show how it can contribute to each stage of breast-cancer-to-bone metastasis and also discuss novel approaches for the selective targeting of MMP-2 in the setting of the bone-cancer microenvironment. Full article
(This article belongs to the Special Issue Targeting Bone Metastasis in Cancer)
Show Figures

Figure 1

37 pages, 3829 KiB  
Review
Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts
by Alison B. Shupp, Alexus D. Kolb, Dimpi Mukhopadhyay and Karen M. Bussard
Cancers 2018, 10(6), 182; https://doi.org/10.3390/cancers10060182 - 4 Jun 2018
Cited by 94 | Viewed by 9498
Abstract
The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between [...] Read more.
The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone. Full article
(This article belongs to the Special Issue Targeting Bone Metastasis in Cancer)
Show Figures

Figure 1

14 pages, 493 KiB  
Article
Factors Influencing the Clinical Presentation of Breakthrough Pain in Cancer Patients
by Sebastiano Mercadante, Paolo Marchetti, Arturo Cuomo, Augusto Caraceni, Rocco Domenico Mediati, Renato Vellucci, Massimo Mammucari, Silvia Natoli, Marzia Lazzari, Mario Dauri, Claudio Adile, Mario Airoldi, Giuseppe Azzarello, Mauro Bandera, Livio Blasi, Giacomo Cartenì, Bruno Chiurazzi, Benedetta Veruska Pierpaola Costanzo, Daniela Degiovanni, Flavio Fusco, Vittorio Guardamagna, Vincenzo Iaffaioli, Simeone Liguori, Loredana Palermo, Sergio Mameli, Francesco Masedu, Rodolfo Mattioli, Teresita Mazzei, Rita Maria Melotti, Valentino Menardo, Danilo Miotti, Stefano Moroso, Gaetano Pascoletti, Stefano De Santis, Remo Orsetti, Alfonso Papa, Sergio Ricci, Elvira Scelzi, Michele Sofia, Giuseppe Tonini, Alessandro Valle, Federica Aielli and On behalf of the IOPS-MS Study Groupadd Show full author list remove Hide full author list
Cancers 2018, 10(6), 175; https://doi.org/10.3390/cancers10060175 - 1 Jun 2018
Cited by 50 | Viewed by 6494
Abstract
Background: The aim of this study was to identify potential variables influencing the clinical presentation of breakthrough cancer pain (BTP). Methods: Cancer patients with a diagnosis of BTP were enrolled. Demographic and clinical characteristics, as well as background pain and BTP characteristics were [...] Read more.
Background: The aim of this study was to identify potential variables influencing the clinical presentation of breakthrough cancer pain (BTP). Methods: Cancer patients with a diagnosis of BTP were enrolled. Demographic and clinical characteristics, as well as background pain and BTP characteristics were collected. Multivariate analyses were conducted to assess the correlation between BTP characteristics and the variables examined. Results: Data of 4016 patients were analysed. Average daily number of BTP episodes was 2.4, mean intensity was 7.5, and a mean duration was 43.3 min. A short onset BTP was observed in 68.9% of patients. In 30.5% of patients BTP was predictable. There were 86.0% of participants who reported a marked interference of BTP with their daily activities. Furthermore, 86.8% of patients were receiving opioids for the management of BTP. The average time to meaningful pain relief was 16.5 min and 70.9% of patients were satisfied with their BTP medications. Age, head and neck cancer, Karnofsky, background pain intensity, predictable and fast onset BTP were independently associated with the number of BTP episodes. BTP pain intensity was independently associated with background pain intensity, fast onset BTP, and Karnofsky. Neuropathic pain mechanism was independently associated with unpredictable BTP. Variables independently associated with a longer duration of BTP were age, place of visit, cancer diagnosis, disease-oriented therapy, background pain intensity and mechanism, and unpredictable BTP. Age, Karnofsky, background pain intensity, fast onset, and long duration of BTP were independently associated with interference with daily activity. Conclusions: BTP has a variable presentation depending on interdependent relationships among its different characteristics. Full article
Show Figures

Figure 1

13 pages, 1680 KiB  
Review
Clinical Importance of Epstein–Barr Virus-Associated Gastric Cancer
by Jun Nishikawa, Hisashi Iizasa, Hironori Yoshiyama, Kanami Shimokuri, Yuki Kobayashi, Sho Sasaki, Munetaka Nakamura, Hideo Yanai, Kohei Sakai, Yutaka Suehiro, Takahiro Yamasaki and Isao Sakaida
Cancers 2018, 10(6), 167; https://doi.org/10.3390/cancers10060167 - 29 May 2018
Cited by 68 | Viewed by 7936
Abstract
Epstein–Barr virus-associated gastric carcinoma (EBVaGC) is the most common malignancy caused by EBV infection. EBVaGC has definite histological characteristics similar to gastric carcinoma with lymphoid stroma. Clinically, EBVaGC has a significantly low frequency of lymph node metastasis compared with EBV-negative gastric cancer, resulting [...] Read more.
Epstein–Barr virus-associated gastric carcinoma (EBVaGC) is the most common malignancy caused by EBV infection. EBVaGC has definite histological characteristics similar to gastric carcinoma with lymphoid stroma. Clinically, EBVaGC has a significantly low frequency of lymph node metastasis compared with EBV-negative gastric cancer, resulting in a better prognosis. The Cancer Genome Atlas of gastric adenocarcinomas proposed a molecular classification divided into four molecular subtypes: (1) EBVaGC; (2) microsatellite instability; (3) chromosomal instability; and (4) genomically stable tumors. EBVaGC harbors a DNA methylation phenotype, PD-L1 and PD-L2 overexpression, and frequent alterations in the PIK3CA gene. We review clinical importance of EBVaGC and discuss novel therapeutic applications for EBVaGC. Full article
(This article belongs to the Special Issue Epstein–Barr Virus Associated Cancers)
Show Figures

Figure 1

19 pages, 979 KiB  
Review
Deregulation of Negative Controls on TGF-β1 Signaling in Tumor Progression
by Jiaqi Tang, Cody C. Gifford, Rohan Samarakoon and Paul J. Higgins
Cancers 2018, 10(6), 159; https://doi.org/10.3390/cancers10060159 - 25 May 2018
Cited by 58 | Viewed by 6161
Abstract
The multi-functional cytokine transforming growth factor-β1 (TGF-β1) has growth inhibitory and anti-inflammatory roles during homeostasis and the early stages of cancer. Aberrant TGF-β activation in the late-stages of tumorigenesis, however, promotes development of aggressive growth characteristics and metastatic spread. Given the critical importance [...] Read more.
The multi-functional cytokine transforming growth factor-β1 (TGF-β1) has growth inhibitory and anti-inflammatory roles during homeostasis and the early stages of cancer. Aberrant TGF-β activation in the late-stages of tumorigenesis, however, promotes development of aggressive growth characteristics and metastatic spread. Given the critical importance of this growth factor in fibrotic and neoplastic disorders, the TGF-β1 network is subject to extensive, multi-level negative controls that impact receptor function, mothers against decapentaplegic homolog 2/3 (SMAD2/3) activation, intracellular signal bifurcation into canonical and non-canonical pathways and target gene promotor engagement. Such negative regulators include phosphatase and tensin homologue (PTEN), protein phosphatase magnesium 1A (PPM1A), Klotho, bone morphogenic protein 7 (BMP7), SMAD7, Sloan-Kettering Institute proto-oncogene/ Ski related novel gene (Ski/SnoN), and bone morphogenetic protein and activin membrane-bound Inhibitor (BAMBI). The progression of certain cancers is accompanied by loss of expression, overexpression, mislocalization, mutation or deletion of several endogenous repressors of the TGF-β1 cascade, further modulating signal duration/intensity and phenotypic reprogramming. This review addresses how their aberrant regulation contributes to cellular plasticity, tumor progression/metastasis and reversal of cell cycle arrest and discusses the unexplored therapeutic value of restoring the expression and/or function of these factors as a novel approach to cancer treatment. Full article
(This article belongs to the Special Issue TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

12 pages, 1183 KiB  
Article
A Phase II Study of Pelareorep (REOLYSIN®) in Combination with Gemcitabine for Patients with Advanced Pancreatic Adenocarcinoma
by Devalingam Mahalingam, Sanjay Goel, Santiago Aparo, Sukeshi Patel Arora, Nicole Noronha, Hue Tran, Romit Chakrabarty, Giovanni Selvaggi, Andres Gutierrez, Matthew Coffey, Steffan T. Nawrocki, Gerard Nuovo and Monica M. Mita
Cancers 2018, 10(6), 160; https://doi.org/10.3390/cancers10060160 - 25 May 2018
Cited by 91 | Viewed by 7731
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with 1 and 5-year survival rates of ~18% and 7% respectively. FOLFIRINOX or gemcitabine in combination with nab-paclitaxel are standard treatment options for metastatic disease. However, both regimens are more toxic than gemcitabine alone. Pelareorep [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with 1 and 5-year survival rates of ~18% and 7% respectively. FOLFIRINOX or gemcitabine in combination with nab-paclitaxel are standard treatment options for metastatic disease. However, both regimens are more toxic than gemcitabine alone. Pelareorep (REOLYSIN®), a proprietary isolate of reovirus Type 3 Dearing, has shown antitumor activity in clinical and preclinical models. In addition to direct cytotoxic effects, pelareorep can trigger antitumor immune responses. Due to the high frequency of RAS mutations in PDAC, we hypothesized that pelareorep would promote selective reovirus replication in pancreatic tumors and enhance the anticancer activity of gemcitabine. Chemotherapy-naïve patients with advanced PDAC were eligible for the study. The primary objective was Clinical Benefit Rate (complete response (CR) + partial response (PR) + stable disease (SD) ≥ 12 weeks) and secondary objectives include overall survival (OS), toxicity, and pharmacodynamics (PD) analysis. The study enrolled 34 patients; results included one partial response, 23 stable disease, and 5 progressive disease. The median OS was 10.2 months, with a 1- and 2-year survival rate of 45% and 24%, respectively. The treatment was well tolerated with manageable nonhematological toxicities. PD analysis revealed reovirus replication within pancreatic tumor and associated apoptosis. Upregulation of immune checkpoint marker PD-L1 suggests future consideration of combining oncolytic virus therapy with anti-PD-L1 inhibitors. We conclude that pelareorep complements single agent gemcitabine in PDAC. Full article
(This article belongs to the Special Issue Oncolytic Virotherapy)
Show Figures

Figure 1

20 pages, 1661 KiB  
Review
Targeted Tumor Therapy Remixed—An Update on the Use of Small-Molecule Drugs in Combination Therapies
by Martina V. Gatzka
Cancers 2018, 10(6), 155; https://doi.org/10.3390/cancers10060155 - 24 May 2018
Cited by 40 | Viewed by 9833
Abstract
Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor [...] Read more.
Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor combinations or immune checkpoint inhibitors are current first-line treatments for metastatic melanoma. However, despite great improvements of survival rates limitations due to tumor heterogeneity, primary and acquired therapy resistance, immune evasion, and economical considerations will need to be overcome. Accordingly, ongoing clinical trials explore the individualized use of small-molecule drugs in new targeted therapy combinations based on patient parameters and tumor biopsies. With focus on melanoma therapy this review aims at providing a comprehensive overview of such novel alternative and combinational therapy strategies currently emerging from basic research. The molecular principles and drug classes that may hold promise for improved tumor therapy combination regimens including kinase inhibition, induction of apoptosis, DNA-damage response inhibition, epigenetic reprogramming, telomerase inhibition, redox modulation, metabolic reprogramming, proteasome inhibition, cancer stem cell transdifferentiation, immune cell signaling modulation, and others, are explained in brief. In addition, relevant targeted therapy combinations in current clinical trials and individualized treatment strategies are highlighted. Full article
Show Figures

Graphical abstract

19 pages, 305 KiB  
Review
Reversal of Resistance in Targeted Therapy of Metastatic Melanoma: Lessons Learned from Vemurafenib (BRAFV600E-Specific Inhibitor)
by Antoni Xavier Torres-Collado, Jeffrey Knott and Ali R. Jazirehi
Cancers 2018, 10(6), 157; https://doi.org/10.3390/cancers10060157 - 24 May 2018
Cited by 39 | Viewed by 5854
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway [...] Read more.
Malignant melanoma is the most aggressive form of skin cancer and has a very low survival rate. Over 50% of melanomas harbor various BRAF mutations with the most common being the V600E. BRAFV600E mutation that causes constitutive activation of the MAPK pathway leading to drug-, immune-resistance, apoptosis evasion, proliferation, survival, and metastasis of melanomas. The ATP competitive BRAFV600E selective inhibitor, vemurafenib, has shown dramatic success in clinical trials; promoting tumor regression and an increase in overall survival of patients with metastatic melanoma. Regrettably, vemurafenib-resistance develops over an average of six months, which renders melanomas resistant to other therapeutic strategies. Elucidation of the underlying mechanism(s) of acquisition of vemurafenib-resistance and design of novel approaches to override resistance is the subject of intense clinical and basic research. In this review, we summarize recent developments in therapeutic approaches and clinical investigations on melanomas with BRAFV600E mutation to establish a new platform for the treatment of melanoma. Full article
(This article belongs to the Special Issue Sensitization Strategies in Cancer Treatment)
17 pages, 888 KiB  
Review
40 Years of Research Put p53 in Translation
by Virginie Marcel, Flora Nguyen Van Long and Jean-Jacques Diaz
Cancers 2018, 10(5), 152; https://doi.org/10.3390/cancers10050152 - 21 May 2018
Cited by 41 | Viewed by 6519
Abstract
Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, [...] Read more.
Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

10 pages, 4221 KiB  
Article
AZD1775 Increases Sensitivity to Olaparib and Gemcitabine in Cancer Cells with p53 Mutations
by Xiangbing Meng, Jianling Bi, Yujun Li, Shujie Yang, Yuping Zhang, Mary Li, Haitao Liu, Yiyang Li, Megan E. Mcdonald, Kristina W. Thiel, Kuo-Kuang Wen, Xinhao Wang, Meng Wu and Kimberly K. Leslie
Cancers 2018, 10(5), 149; https://doi.org/10.3390/cancers10050149 - 19 May 2018
Cited by 48 | Viewed by 6562
Abstract
Tumor suppressor p53 is responsible for enforcing cell cycle checkpoints at G1/S and G2/M in response to DNA damage, thereby allowing both normal and tumor cells to repair DNA before entering S and M. However, tumor cells with absent or mutated p53 are [...] Read more.
Tumor suppressor p53 is responsible for enforcing cell cycle checkpoints at G1/S and G2/M in response to DNA damage, thereby allowing both normal and tumor cells to repair DNA before entering S and M. However, tumor cells with absent or mutated p53 are able to activate alternative signaling pathways that maintain the G2/M checkpoint, which becomes uniquely critical for the survival of such tumor cells. We hypothesized that abrogation of the G2 checkpoint might preferentially sensitize p53-defective tumor cells to DNA-damaging agents and spare normal cells with intact p53 function. The tyrosine kinase WEE1 regulates cdc2 activity at the G2/M checkpoint and prevents entry into mitosis in response to DNA damage or stalled DNA replication. AZD1775 is a WEE1 inhibitor that overrides and opens the G2/M checkpoint by preventing WEE1-mediated phosphorylation of cdc2 at tyrosine 15. In this study, we assessed the effect of AZD1775 on endometrial and ovarian cancer cells in the presence of two DNA damaging agents, the PARP1 inhibitor, olaparib, and the chemotherapeutic agent, gemcitabine. We show that AZD1775 alone is effective as a therapeutic agent against some p53 mutated cell models. Moreover, the combination of AZD1775 with olaparib or gemcitabine is synergistic in cells with mutant p53 and constitutes a new approach that should be considered in the treatment of advanced and recurrent gynecologic cancer. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

15 pages, 703 KiB  
Review
The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure
by Eléonore Toufektchan and Franck Toledo
Cancers 2018, 10(5), 135; https://doi.org/10.3390/cancers10050135 - 6 May 2018
Cited by 91 | Viewed by 8687
Abstract
The p53 protein has been extensively studied for its capacity to prevent proliferation of cells with a damaged genome. Surprisingly, however, our recent analysis of mice expressing a hyperactive mutant p53 that lacks the C-terminal domain revealed that increased p53 activity may alter [...] Read more.
The p53 protein has been extensively studied for its capacity to prevent proliferation of cells with a damaged genome. Surprisingly, however, our recent analysis of mice expressing a hyperactive mutant p53 that lacks the C-terminal domain revealed that increased p53 activity may alter genome maintenance. We showed that p53 downregulates genes essential for telomere metabolism, DNA repair, and centromere structure and that a sustained p53 activity leads to phenotypic traits associated with dyskeratosis congenita and Fanconi anemia. This downregulation is largely conserved in human cells, which suggests that our findings could be relevant to better understand processes involved in bone marrow failure as well as aging and tumor suppression. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

29 pages, 2367 KiB  
Review
YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting
by Federica Lo Sardo, Sabrina Strano and Giovanni Blandino
Cancers 2018, 10(5), 137; https://doi.org/10.3390/cancers10050137 - 6 May 2018
Cited by 83 | Viewed by 11343
Abstract
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance [...] Read more.
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance to the treatment. Further knowledge of the mechanisms driving lung tumorigenesis, aggressiveness, metastasization, and resistance to treatments could provide new tools for detecting the disease at an earlier stage and for a better response to therapy. In this scenario, Yes Associated Protein (YAP) and Trascriptional Coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as promising therapeutic targets. Here, we will discuss the most recent advances made in YAP and TAZ biology in lung cancer and, more importantly, on the newly discovered mechanisms of YAP and TAZ inhibition in lung cancer as well as their clinical implications. Full article
Show Figures

Figure 1

10 pages, 661 KiB  
Review
Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer
by Lorenzo Stramucci, Angelina Pranteda and Gianluca Bossi
Cancers 2018, 10(5), 131; https://doi.org/10.3390/cancers10050131 - 3 May 2018
Cited by 83 | Viewed by 8710
Abstract
TP53 is universally recognized as a pivotal protein in cell-cycle fate and apoptotic induction and, unsurprisingly, it is one of the most commonly hijacked control mechanisms in cancer. Recently, the kinase MKK3 emerged as a potential therapeutic target in different types of solid [...] Read more.
TP53 is universally recognized as a pivotal protein in cell-cycle fate and apoptotic induction and, unsurprisingly, it is one of the most commonly hijacked control mechanisms in cancer. Recently, the kinase MKK3 emerged as a potential therapeutic target in different types of solid tumor being linked to mutant p53 gain-of-function. In this review, we summarize the delicate relationship among p53 mutational status, MKK3/MKK6 and the downstream activated master kinase p38MAPK, dissecting a finely-tuned crosstalk, in a potentially cell-context dependent scenario that urges towards a deeper characterization of the different molecular players involved in this signaling cascade and their interactions. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

15 pages, 3343 KiB  
Article
Hypoxia-Induced Cisplatin Resistance in Non-Small Cell Lung Cancer Cells Is Mediated by HIF-1α and Mutant p53 and Can Be Overcome by Induction of Oxidative Stress
by Christophe Deben, Vanessa Deschoolmeester, Jorrit De Waele, Julie Jacobs, Jolien Van den Bossche, An Wouters, Marc Peeters, Christian Rolfo, Evelien Smits, Filip Lardon and Patrick Pauwels
Cancers 2018, 10(4), 126; https://doi.org/10.3390/cancers10040126 - 21 Apr 2018
Cited by 44 | Viewed by 7376
Abstract
The compound APR-246 (PRIMA-1MET) is a known reactivator of (mutant) p53 and inducer of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However, the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study [...] Read more.
The compound APR-246 (PRIMA-1MET) is a known reactivator of (mutant) p53 and inducer of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However, the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study focusses on the role of hypoxia-inducible factor-1α (HIF-1α) and the p53 tumor suppressor protein in hypoxia-induced cisplatin resistance in non-small cell lung cancer (NSCLC) cells and the potential of APR-246 to overcome this resistance. We observed that hypoxia-induced cisplatin resistance only occurred in the p53 mutant NCI-H2228Q331* cell line, and not in the wild type A549 and mutant NCI-H1975R273H cell lines. Cisplatin reduced HIF-1α protein levels in NCI-H2228Q331* cells, leading to a shift in expression from HIF-1α-dependent to p53-dependent transcription targets under hypoxia. APR-246 was able to overcome hypoxia-induced cisplatin resistance in NCI-H2228Q331* cells in a synergistic manner without affecting mutant p53Q331* transcriptional activity, but significantly depleting total glutathione levels more efficiently under hypoxic conditions. Synergism was dependent on the presence of mutant p53Q331* and the induction of reactive oxygen species, with depletion of one or the other leading to loss of synergism. Our data further support the rationale of combining APR-246 with cisplatin in NSCLC, since their synergistic interaction is retained or enforced under hypoxic conditions in the presence of mutant p53. Full article
(This article belongs to the Special Issue p53 Signaling in Cancers)
Show Figures

Figure 1

29 pages, 853 KiB  
Review
Innovative Diagnostic Methods for Early Prostate Cancer Detection through Urine Analysis: A Review
by Carmen Bax, Gianluigi Taverna, Lidia Eusebio, Selena Sironi, Fabio Grizzi, Giorgio Guazzoni and Laura Capelli
Cancers 2018, 10(4), 123; https://doi.org/10.3390/cancers10040123 - 18 Apr 2018
Cited by 54 | Viewed by 7808
Abstract
Prostate cancer is the second most common cause of cancer death among men. It is an asymptomatic and slow growing tumour, which starts occurring in young men, but can be detected only around the age of 40–50. Although its long latency period and [...] Read more.
Prostate cancer is the second most common cause of cancer death among men. It is an asymptomatic and slow growing tumour, which starts occurring in young men, but can be detected only around the age of 40–50. Although its long latency period and potential curability make prostate cancer a perfect candidate for screening programs, the current procedure lacks in specificity. Researchers are rising to the challenge of developing innovative tools able of detecting the disease during its early stage that is the most curable. In recent years, the interest in characterisation of biological fluids aimed at the identification of tumour-specific compounds has increased significantly, since cell neoplastic transformation causes metabolic alterations leading to volatile organic compounds release. In the scientific literature, different approaches have been proposed. Many studies focus on the identification of a cancer-characteristic “odour fingerprint” emanated from biological samples through the application of sensorial or senso-instrumental analyses, others suggest a chemical characterisation of biological fluids with the aim of identifying prostate cancer (PCa)-specific biomarkers. This paper focuses on the review of literary studies in the field of prostate cancer diagnosis, in order to provide an overview of innovative methods based on the analysis of urine, thereby comparing them with the traditional diagnostic procedures. Full article
Show Figures

Figure 1

11 pages, 20100 KiB  
Commentary
Roles of Polyploid/Multinucleated Giant Cancer Cells in Metastasis and Disease Relapse Following Anticancer Treatment
by Razmik Mirzayans, Bonnie Andrais and David Murray
Cancers 2018, 10(4), 118; https://doi.org/10.3390/cancers10040118 - 15 Apr 2018
Cited by 137 | Viewed by 11508
Abstract
Tumors and tumor-derived cell lines contain polyploid giant cells with significantly elevated genomic content, often with multiple nuclei. The frequency of giant cells can increase markedly following anticancer treatment. Although giant cells enter a dormant phase and therefore do not form macroscopic colonies [...] Read more.
Tumors and tumor-derived cell lines contain polyploid giant cells with significantly elevated genomic content, often with multiple nuclei. The frequency of giant cells can increase markedly following anticancer treatment. Although giant cells enter a dormant phase and therefore do not form macroscopic colonies (aggregates of ≥50 cells) in the conventional in vitro colony formation assay, they remain viable and metabolically active. The purpose of this commentary is to underscore the potential importance of polyploid/multinucleated giant cells in metastasis and cancer recurrence following exposure to anticancer agents. We also discuss the possibility that most preclinical (cell-based and animal model) drug discovery approaches might not account for delayed responses that are associated with dormant giant cells. Full article
Show Figures

Figure 1

16 pages, 3999 KiB  
Review
ALK in Neuroblastoma: Biological and Therapeutic Implications
by Ricky M. Trigg and Suzanne D. Turner
Cancers 2018, 10(4), 113; https://doi.org/10.3390/cancers10040113 - 10 Apr 2018
Cited by 110 | Viewed by 9961
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40–50%. Therefore, novel treatment strategies aimed at providing long-term disease remission [...] Read more.
Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40–50%. Therefore, novel treatment strategies aimed at providing long-term disease remission are urgently sought. ALK, encoding the anaplastic lymphoma kinase receptor, is altered by gain-of-function point mutations in around 14% of high-risk NB and represents an ideal therapeutic target given its low or absent expression in healthy tissue postnatally. Small-molecule inhibitors of Anaplastic Lymphoma Kinase (ALK) approved in ALK fusion-positive lung cancer are currently undergoing clinical assessment in patients with ALK-mutant NB. Parallel pre-clinical studies are demonstrating the efficacy of ALK inhibitors against common ALK variants in NB; however, a complex picture of therapeutic resistance is emerging. It is anticipated that long-term use of these compounds will require combinatorial targeting of pathways downstream of ALK, functionally-related ‘bypass’ mechanisms and concomitant oncogenic pathways. Full article
Show Figures

Figure 1

37 pages, 28465 KiB  
Review
YAP/TAZ Activation as a Target for Treating Metastatic Cancer
by Janine S. A. Warren, Yuxuan Xiao and John M. Lamar
Cancers 2018, 10(4), 115; https://doi.org/10.3390/cancers10040115 - 10 Apr 2018
Cited by 121 | Viewed by 13595
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or [...] Read more.
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses. Full article
Show Figures

Figure 1

23 pages, 44166 KiB  
Review
Immunohistochemistry for Diagnosis of Metastatic Carcinomas of Unknown Primary Site
by Janick Selves, Elodie Long-Mira, Marie-Christine Mathieu, Philippe Rochaix and Marius Ilié
Cancers 2018, 10(4), 108; https://doi.org/10.3390/cancers10040108 - 5 Apr 2018
Cited by 119 | Viewed by 28881
Abstract
Immunohistochemistry has become an essential ancillary examination for the identification and classification of carcinomas of unknown primary site (CUPs). Over the last decade, the diagnostic accuracy of organ- or tumour-specific immunomarkers and the clinical validation of effective immunohistochemical panels has improved significantly. When [...] Read more.
Immunohistochemistry has become an essential ancillary examination for the identification and classification of carcinomas of unknown primary site (CUPs). Over the last decade, the diagnostic accuracy of organ- or tumour-specific immunomarkers and the clinical validation of effective immunohistochemical panels has improved significantly. When dealing with small sample sizes, diagnostic accuracy is crucial, particularly in the current era of targeted molecular and immune-based therapies. Effective systematic use of appropriate immunohistochemical panels enables accurate classification of most of the undifferentiated carcinomas as well as careful preservation of tissues for potential molecular or other ancillary tests. This review discusses the algorithmic approach to the diagnosis of CUPs using CK7 and CK20 staining patterns. It outlines the most frequently used tissue-specific antibodies, provides some pitfalls essential in avoiding potential diagnostic errors and discusses the complementary tools, such as molecular tumour profiling and mutation-specific antibodies, for the improvement of diagnosis and prediction of the treatment response. Full article
(This article belongs to the Special Issue Immunohistochemistry and Cancer Diagnosis)
Show Figures

Figure 1

15 pages, 295 KiB  
Review
Inhibiting TRK Proteins in Clinical Cancer Therapy
by Allison M. Lange and Hui-Wen Lo
Cancers 2018, 10(4), 105; https://doi.org/10.3390/cancers10040105 - 4 Apr 2018
Cited by 129 | Viewed by 9641
Abstract
Gene rearrangements resulting in the aberrant activity of tyrosine kinases have been identified as drivers of oncogenesis in a variety of cancers. The tropomyosin receptor kinase (TRK) family of tyrosine receptor kinases is emerging as an important target for cancer therapeutics. The TRK [...] Read more.
Gene rearrangements resulting in the aberrant activity of tyrosine kinases have been identified as drivers of oncogenesis in a variety of cancers. The tropomyosin receptor kinase (TRK) family of tyrosine receptor kinases is emerging as an important target for cancer therapeutics. The TRK family contains three members, TRKA, TRKB, and TRKC, and these proteins are encoded by the genes NTRK1, NTRK2, and NTRK3, respectively. To activate TRK receptors, neurotrophins bind to the extracellular region stimulating dimerization, phosphorylation, and activation of downstream signaling pathways. Major known downstream pathways include RAS/MAPK/ERK, PLCγ, and PI3K/Akt. While being rare in most cancers, TRK fusions with other proteins have been well-established as oncogenic events in specific malignancies, including glioblastoma, papillary thyroid carcinoma, and secretory breast carcinomas. TRK protein amplification as well as alternative splicing events have also been described as contributors to cancer pathogenesis. For patients harboring alterations in TRK expression or activity, TRK inhibition emerges as an important therapeutic target. To date, multiple trials testing TRK-inhibiting compounds in various cancers are underway. In this review, we will summarize the current therapeutic trials for neoplasms involving NTKR gene alterations, as well as the promises and setbacks that are associated with targeting gene fusions. Full article
22 pages, 88948 KiB  
Review
The Pathological Spectrum of Systemic Anaplastic Large Cell Lymphoma (ALCL)
by Ivonne A. Montes-Mojarro, Julia Steinhilber, Irina Bonzheim, Leticia Quintanilla-Martinez and Falko Fend
Cancers 2018, 10(4), 107; https://doi.org/10.3390/cancers10040107 - 4 Apr 2018
Cited by 54 | Viewed by 12470
Abstract
Anaplastic large cell lymphoma (ALCL) represents a group of malignant T-cell lymphoproliferations that share morphological and immunophenotypical features, namely strong CD30 expression and variable loss of T-cell markers, but differ in clinical presentation and prognosis. The recognition of anaplastic lymphoma kinase (ALK) fusion [...] Read more.
Anaplastic large cell lymphoma (ALCL) represents a group of malignant T-cell lymphoproliferations that share morphological and immunophenotypical features, namely strong CD30 expression and variable loss of T-cell markers, but differ in clinical presentation and prognosis. The recognition of anaplastic lymphoma kinase (ALK) fusion proteins as a result of chromosomal translocations or inversions was the starting point for the distinction of different subgroups of ALCL. According to their distinct clinical settings and molecular findings, the 2016 revised World Health Organization (WHO) classification recognizes four different entities: systemic ALK-positive ALCL (ALK+ ALCL), systemic ALK-negative ALCL (ALK− ALCL), primary cutaneous ALCL (pC-ALCL), and breast implant-associated ALCL (BI-ALCL), the latter included as a provisional entity. ALK is rearranged in approximately 80% of systemic ALCL cases with one of its partner genes, most commonly NPM1, and is associated with favorable prognosis, whereas systemic ALK− ALCL shows heterogeneous clinical, phenotypical, and genetic features, underlining the different oncogenesis between these two entities. Recognition of the pathological spectrum of ALCL is crucial to understand its pathogenesis and its boundaries with other entities. In this review, we will focus on the morphological, immunophenotypical, and molecular features of systemic ALK+ and ALK− ALCL. In addition, BI-ALCL will be discussed. Full article
Show Figures

Figure 1

14 pages, 65406 KiB  
Review
Bladder Cancer: New Insights into Its Molecular Pathology
by Kentaro Inamura
Cancers 2018, 10(4), 100; https://doi.org/10.3390/cancers10040100 - 1 Apr 2018
Cited by 76 | Viewed by 14399
Abstract
Bladder cancer is one of the most prevalent cancers worldwide. Unfortunately, there have been few advances in its clinical management due to a poor understanding of the correlations between its molecular and clinical features. Mounting evidence suggests that bladder cancer comprises a group [...] Read more.
Bladder cancer is one of the most prevalent cancers worldwide. Unfortunately, there have been few advances in its clinical management due to a poor understanding of the correlations between its molecular and clinical features. Mounting evidence suggests that bladder cancer comprises a group of molecularly heterogeneous diseases that undergo a variety of clinical courses and possess diverse therapeutic responses. Owing to the close association between its molecular subtypes and clinicopathological features, specific therapeutic strategies have recently been suggested. This review summarizes the current understanding of the molecular pathology of bladder cancer, including its molecular biomarkers/pathways and molecular subtypes that have been newly identified using high-throughput technologies. It also discusses advances in our understanding of personalized treatments for specific molecular subtypes. Full article
Show Figures

Figure 1

21 pages, 3536 KiB  
Review
Epigenetic Modifications as Biomarkers of Tumor Development, Therapy Response, and Recurrence across the Cancer Care Continuum
by Margaret L. Thomas and Paola Marcato
Cancers 2018, 10(4), 101; https://doi.org/10.3390/cancers10040101 - 1 Apr 2018
Cited by 309 | Viewed by 8381
Abstract
Aberrant epigenetic modifications are an early event in carcinogenesis, with the epigenetic landscape continuing to change during tumor progression and metastasis—these observations suggest that specific epigenetic modifications could be used as diagnostic and prognostic biomarkers for many cancer types. DNA methylation, post-translational histone [...] Read more.
Aberrant epigenetic modifications are an early event in carcinogenesis, with the epigenetic landscape continuing to change during tumor progression and metastasis—these observations suggest that specific epigenetic modifications could be used as diagnostic and prognostic biomarkers for many cancer types. DNA methylation, post-translational histone modifications, and non-coding RNAs are all dysregulated in cancer and are detectable to various degrees in liquid biopsies such as sputum, urine, stool, and blood. Here, we will focus on the application of liquid biopsies, as opposed to tissue biopsies, because of their potential as non-invasive diagnostic tools and possible use in monitoring therapy response and progression to metastatic disease. This includes a discussion of septin-9 (SEPT9) DNA hypermethylation for detecting colorectal cancer, which is by far the most developed epigenetic biomarker assay. Despite their potential as prognostic and diagnostic biomarkers, technical issues such as inconsistent methodology between studies, overall low yield of epigenetic material in samples, and the need for improved histone and non-coding RNA purification methods are limiting the use of epigenetic biomarkers. Once these technical limitations are overcome, epigenetic biomarkers could be used to monitor cancer development, disease progression, therapeutic response, and recurrence across the entire cancer care continuum. Full article
(This article belongs to the Special Issue Epigenetic Influence on Cancer Metastasis and/or Treatment Resistance)
Show Figures

Figure 1

Back to TopTop