Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3712 KiB  
Review
mTOR Cross-Talk in Cancer and Potential for Combination Therapy
by Fabiana Conciatori, Ludovica Ciuffreda, Chiara Bazzichetto, Italia Falcone, Sara Pilotto, Emilio Bria, Francesco Cognetti and Michele Milella
Cancers 2018, 10(1), 23; https://doi.org/10.3390/cancers10010023 - 19 Jan 2018
Cited by 109 | Viewed by 11870
Abstract
The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 [...] Read more.
The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy. Full article
(This article belongs to the Special Issue mTOR Pathway in Cancer)
Show Figures

Figure 1

27 pages, 959 KiB  
Review
Alcohol-Derived Acetaldehyde Exposure in the Oral Cavity
by Alessia Stornetta, Valeria Guidolin and Silvia Balbo
Cancers 2018, 10(1), 20; https://doi.org/10.3390/cancers10010020 - 14 Jan 2018
Cited by 67 | Viewed by 13097
Abstract
Alcohol is classified by the International Agency for Research on Cancer (IARC) as a human carcinogen and its consumption has been associated to an increased risk of liver, breast, colorectum, and upper aerodigestive tract (UADT) cancers. Its mechanisms of carcinogenicity remain unclear and [...] Read more.
Alcohol is classified by the International Agency for Research on Cancer (IARC) as a human carcinogen and its consumption has been associated to an increased risk of liver, breast, colorectum, and upper aerodigestive tract (UADT) cancers. Its mechanisms of carcinogenicity remain unclear and various hypotheses have been formulated depending on the target organ considered. In the case of UADT cancers, alcohol’s major metabolite acetaldehyde seems to play a crucial role. Acetaldehyde reacts with DNA inducing modifications, which, if not repaired, can result in mutations and lead to cancer development. Despite alcohol being mainly metabolized in the liver, several studies performed in humans found higher levels of acetaldehyde in saliva compared to those found in blood immediately after alcohol consumption. These results suggest that alcohol-derived acetaldehyde exposure may occur in the oral cavity independently from liver metabolism. This hypothesis is supported by our recent results showing the presence of acetaldehyde-related DNA modifications in oral cells of monkeys and humans exposed to alcohol, overall suggesting that the alcohol metabolism in the oral cavity is an independent cancer risk factor. This review article will focus on illustrating the factors modulating alcohol-derived acetaldehyde exposure and effects in the oral cavity. Full article
(This article belongs to the Special Issue Alcohol and Cancer)
Show Figures

Figure 1

15 pages, 645 KiB  
Review
mTOR Pathways in Cancer and Autophagy
by Mathieu Paquette, Leeanna El-Houjeiri and Arnim Pause
Cancers 2018, 10(1), 18; https://doi.org/10.3390/cancers10010018 - 12 Jan 2018
Cited by 230 | Viewed by 23683
Abstract
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell [...] Read more.
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer. Full article
(This article belongs to the Special Issue mTOR Pathway in Cancer)
Show Figures

Figure 1

17 pages, 1624 KiB  
Review
Oncogenic Signalling through Mechanistic Target of Rapamycin (mTOR): A Driver of Metabolic Transformation and Cancer Progression
by Ellie Rad, James T. Murray and Andrew R. Tee
Cancers 2018, 10(1), 5; https://doi.org/10.3390/cancers10010005 - 3 Jan 2018
Cited by 50 | Viewed by 9511
Abstract
Throughout the years, research into signalling pathways involved in cancer progression has led to many discoveries of which mechanistic target of rapamycin (mTOR) is a key player. mTOR is a master regulator of cell growth control. mTOR is historically known to promote cell [...] Read more.
Throughout the years, research into signalling pathways involved in cancer progression has led to many discoveries of which mechanistic target of rapamycin (mTOR) is a key player. mTOR is a master regulator of cell growth control. mTOR is historically known to promote cell growth by enhancing the efficiency of protein translation. Research in the last decade has revealed that mTOR’s role in promoting cell growth is much more multifaceted. While mTOR is necessary for normal human physiology, cancer cells take advantage of mTOR signalling to drive their neoplastic growth and progression. Oncogenic signal transduction through mTOR is a common occurrence in cancer, leading to metabolic transformation, enhanced proliferative drive and increased metastatic potential through neovascularisation. This review focuses on the downstream mTOR-regulated processes that are implicated in the “hallmarks” of cancer with focus on mTOR’s involvement in proliferative signalling, metabolic reprogramming, angiogenesis and metastasis. Full article
(This article belongs to the Special Issue mTOR Pathway in Cancer)
Show Figures

Figure 1

13 pages, 432 KiB  
Review
Modification of Epigenetic Histone Acetylation in Hepatocellular Carcinoma
by Kwei-Yan Liu, Li-Ting Wang and Shih-Hsien Hsu
Cancers 2018, 10(1), 8; https://doi.org/10.3390/cancers10010008 - 3 Jan 2018
Cited by 35 | Viewed by 6708
Abstract
Cells respond to various environmental factors such as nutrients, food intake, and drugs or toxins by undergoing dynamic epigenetic changes. An imbalance in dynamic epigenetic changes is one of the major causes of disease, oncogenic activities, and immunosuppressive effects. The aryl hydrocarbon receptor [...] Read more.
Cells respond to various environmental factors such as nutrients, food intake, and drugs or toxins by undergoing dynamic epigenetic changes. An imbalance in dynamic epigenetic changes is one of the major causes of disease, oncogenic activities, and immunosuppressive effects. The aryl hydrocarbon receptor (AHR) is a unique cellular chemical sensor present in most organs, and its dysregulation has been demonstrated in multiple stages of tumor progression in humans and experimental models; however, the effects of the pathogenic mechanisms of AHR on epigenetic regulation remain unclear. Apart from proto-oncogene activation, epigenetic repressions of tumor suppressor genes are involved in tumor initiation, procession, and metastasis. Reverse epigenetic repression of the tumor suppressor genes by epigenetic enzyme activity inhibition and epigenetic enzyme level manipulation is a potential path for tumor therapy. Current evidence and our recent work on deacetylation of histones on tumor-suppressive genes suggest that histone deacetylase (HDAC) is involved in tumor formation and progression, and treating hepatocellular carcinoma with HDAC inhibitors can, at least partially, repress tumor proliferation and transformation by recusing the expression of tumor-suppressive genes such as TP53 and RB1. Full article
(This article belongs to the Special Issue Histone Modification in Cancer)
Show Figures

Figure 1

33 pages, 4543 KiB  
Review
Current Advances in Aptamers for Cancer Diagnosis and Therapy
by Shin-ichiro Hori, Alberto Herrera, John J. Rossi and Jiehua Zhou
Cancers 2018, 10(1), 9; https://doi.org/10.3390/cancers10010009 - 3 Jan 2018
Cited by 138 | Viewed by 13157
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically [...] Read more.
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy. Full article
(This article belongs to the Special Issue Aptamers: Promising Tools for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

16 pages, 585 KiB  
Review
Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy
by Neus Martinez-Bosch, Judith Vinaixa and Pilar Navarro
Cancers 2018, 10(1), 6; https://doi.org/10.3390/cancers10010006 - 3 Jan 2018
Cited by 150 | Viewed by 12393
Abstract
Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer, remains one of the most challenging problems for the biomedical and clinical fields, with abysmal survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed for much [...] Read more.
Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer, remains one of the most challenging problems for the biomedical and clinical fields, with abysmal survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed for much of the mechanisms behind poor drug performance, as it is the main source of the cytokines and chemokines that orchestrate rapid and silent tumor progression to allow tumor cells to be isolated into an extensive fibrotic reaction, which results in inefficient drug delivery. However, since immunotherapy was proclaimed as the breakthrough of the year in 2013, the focus on the stroma of pancreatic cancer has interestingly moved from activated fibroblasts to the immune compartment, trying to understand the immunosuppressive factors that play a part in the strong immune evasion that characterizes PDA. The PDA microenvironment is highly immunosuppressive and is basically composed of T regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressive cells (MDSCs), which block CD8+ T-cell duties in tumor recognition and clearance. Interestingly, preclinical data have highlighted the importance of this immune evasion as the source of resistance to single checkpoint immunotherapies and cancer vaccines and point at pathways that inhibit the immune attack as a key to solve the therapy puzzle. Here, we will discuss the molecular mechanisms involved in PDA immune escape as well as the state of the art of the PDA immunotherapy. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
Show Figures

Figure 1

Back to TopTop