Novel Advanced Oxidation Processes for Catalytic Degradation of Emerging Contaminants

A special issue of Catalysts (ISSN 2073-4344). This special issue belongs to the section "Environmental Catalysis".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 1276

Special Issue Editors


E-Mail Website
Guest Editor
School of Environment, Nanjing Normal University, Nanjing 210023, China
Interests: environmental chemistry; environment function material; photodegradation; photocatalysts; adsorption; wastewater treatment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Environment, Nanjing Normal University, Nanjing 210023, China
Interests: catalytic technology; environmental chemistry; green chemistry; photothermal catalysis; piezocatalysis; persulfate

Special Issue Information

Dear Colleagues,

Emerging pollutants, such as pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs), and microplastics, are characterized by their biological toxicity, environmental persistence, and bioaccumulation. These pollutants have diverse sources, pose hidden environmental risks, and are challenging to manage. Water bodies are the primary medium for the distribution of emerging contaminants in the environment. Most of these contaminants are aromatic or heterocyclic compounds with poor water solubility but high lipid solubility, rendering them metabolically stable and difficult to remove effectively through traditional wastewater treatment processes such as adsorption, coagulation, and biological treatment. Therefore, there is an urgent need to develop more effective technologies to enhance end-of-pipe management capabilities for emerging contaminants. Advanced oxidation processes (AOPs) have been proven to degrade a variety of emerging contaminants by generating reactive oxygen species (ROS) with high oxidation potential. This Special Issue aims to explore novel AOPs, including photocatalysis, photothermal catalysis, persulfate/peracetic acid/periodate-based processes, piezocatalysis, and electrochemical oxidation, among others, and evaluate their efficiency, adaptability, mechanism, and potential for practical application in various environmental conditions. The goal is to provide insights into sustainable and effective strategies for mitigating the environmental risks posed by emerging contaminants and ensuring water quality safety.

Prof. Dr. Huan He
Dr. Qiuyi Ji
Dr. Chengdu Qi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Catalysts is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced oxidation processes (AOPs)
  • emerging contaminants
  • water treatment
  • piezocatalysis
  • photocatalysis
  • photothermal catalysis
  • electrochemical oxidation
  • oxidizing agent

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1706 KB  
Article
Microwave-Induced Deep Oxidation of Brilliant Green Using Carbon Nanotube-Supported Bismuth Ferrite
by Haoran Liu, Hongzhe Chen, Yan Xue, Qiang Zhong and Shaogui Yang
Catalysts 2025, 15(10), 964; https://doi.org/10.3390/catal15100964 - 8 Oct 2025
Viewed by 322
Abstract
Microwave-induced oxidation has emerged as an effective approach for water purification. In this study, bismuth ferrite-supporting carbon nanotubes with strong microwave absorption and magnetism were successfully fabricated for the degradation of brilliant green. The reactivity of bismuth ferrite in microwave fields and the [...] Read more.
Microwave-induced oxidation has emerged as an effective approach for water purification. In this study, bismuth ferrite-supporting carbon nanotubes with strong microwave absorption and magnetism were successfully fabricated for the degradation of brilliant green. The reactivity of bismuth ferrite in microwave fields and the role of carbon nanotubes was revealed by systematic characterization methods. Our results demonstrated that the addition of bismuth ferrite in microwave-induced system can enhance the ability of microwave-induced absorption and further induce the degradation and mineralization of brilliant green within 10 min, significantly surpassing conventional heating methods. The brilliant green decomposition by bismuth ferrite in microwave-induced process is a heterogeneous process. Its excellent performance achieved by active species-trap experiments can be attributed to microwave-induced holes. Overall, this study presented a promising material for microwave-induced elimination of brilliant green and other dyes in aqueous media, which can provide the basis for the environmental application of microwave radiation to water purification and wastewater treatment. Full article
Show Figures

Figure 1

21 pages, 5523 KB  
Article
L-Cysteine Enhanced Degradation of Chlorobenzene in Water Using Nano Zero-Valent Iron/Persulfate System
by Fengcheng Jiang, Guangyi Zhu, He Huang, Xixi Feng, Zhi Feng, Qiao Han, Fayang Guo, Tianjun Chang and Mingshi Wang
Catalysts 2025, 15(9), 911; https://doi.org/10.3390/catal15090911 - 19 Sep 2025
Viewed by 507
Abstract
Nano zero-valent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. While sulfate radical-based advanced oxidation processes (SR-AOPs) activated by nZVI show promise for mono-chlorobenzene (MCB) degradation, their efficiency is severely limited [...] Read more.
Nano zero-valent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. While sulfate radical-based advanced oxidation processes (SR-AOPs) activated by nZVI show promise for mono-chlorobenzene (MCB) degradation, their efficiency is severely limited by surface oxidation of nZVI and Fe3+ accumulation. This study aims to enhance the nZVI/persulfate (PS) system using L-cysteine (Cys) to achieve effective MCB removal. The work involved synthesizing nZVI via borohydride reduction, followed by comprehensive characterization and batch experiments of the Cys/nZVI/PS degradation system of MCB were carried out to evaluate the key influencing factors and analyze the reaction mechanism of Cys-enhanced MCB degradation. Under optimal conditions (0.1 g/L nZVI, 3 mM PS, 0.1 mM Cys, pH 3), 92.6% of MCB was degraded within 90 min—an 18.7% improvement compared to the Cys-free system. Acidic pH promoted Fe2+ release and significantly enhanced degradation, while HCO3 strongly inhibited the process. Mechanistic studies revealed that sulfate radicals (SO4•−) played a dominant role, and Cys served as an electron shuttle that facilitated the Fe3+/Fe2+ cycle and enhanced Fe0 conversion, thereby sustaining PS activation. This study demonstrates that Cys effectively mitigates the limitations of nZVI/PS systems and provides valuable insights for implementing efficient SR-AOPs in treating chlorinated organic contaminants. Full article
Show Figures

Figure 1

Back to TopTop