Habitat Assessment and Conservation Strategies

A special issue of Diversity (ISSN 1424-2818). This special issue belongs to the section "Biogeography and Macroecology".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 3066

Special Issue Editors

Center for Satellite Application on Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China
Interests: ecosystem monitoring and assessment; ecology and environment of remote sensing; ecosystem protection; nature reserves and national parks
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
Interests: wetland restoration; wetland ecological processes and effects; wetland ecology of hyperspectral remote sensing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The loss of species habitat is a key factor in the reduction of species and biodiversity and, under the dual impacts of climate change and human activities, the changing ecological and environmental factors vary across geographical regions and different time periods. These changes make the temporal and spatial changes to species’ habitats complex and diverse, which has highly significant impacts on biodiversity conservation. Therefore, it is very urgent to strengthen research on habitat protection and dynamic assessment, which is of great significance to developing a precise understanding of the living of environment species and how it changes, as well as to enacting out biodiversity conservation in a scientific manner. This special Issue focuses mainly on the “ecological observation, simulation, and evaluation of habitats, and paths toward habitat protection, management, and restoration”. More specifically, studies including, but not limited to, the following topics are welcome:

  • Habitat scope identification, protection network, and corridor construction;
  • Habitat ecological observation, quality assessment, and dynamic simulation;
  • Habitat risk judgment, stress dentification, and scenario prediction;
  • Habitat protection, restoration, and management;
  • Ecosystem protection and climate change responses;
  • Ecological risk monitoring and early warning;
  • Other topics of conservation and management.

Dr. Peng Hou
Prof. Dr. Wei Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diversity is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • habitat monitoring
  • habitat assessment
  • habitat protection
  • ecosystem assessment
  • ecosystem protection
  • nature reserves
  • ecosystem management
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 7617 KB  
Article
Using Circuit Theory to Identify Important Ecological Corridors for Large Mammals Between Wildlife Refuges
by Büşra Kalleci and Özkan Evcin
Diversity 2025, 17(8), 542; https://doi.org/10.3390/d17080542 - 1 Aug 2025
Viewed by 1266
Abstract
Habitat fragmentation restricts the movement of large mammals across broad landscapes, leading to isolation of individuals or groups, reduced interaction with other species, and limited access to vital resources in surrounding habitats. In this study, we aimed to determine the wildlife ecological corridors [...] Read more.
Habitat fragmentation restricts the movement of large mammals across broad landscapes, leading to isolation of individuals or groups, reduced interaction with other species, and limited access to vital resources in surrounding habitats. In this study, we aimed to determine the wildlife ecological corridors for five large mammals (Ursus arctos, Cervus elaphus, Capreolus capreolus, Sus scrofa, and Canis lupus) between Kastamonu Ilgaz Mountain Wildlife Refuge and Gavurdağı Wildlife Refuge. In the field studies, we used the transect, indirect observation, and camera-trap methods to collect presence data. Maximum Entropy (MaxEnt) (v. 3.4.1) software was used to create habitat suitability models of the target species, which are based on the presence-only data approach. The results indicated that AUC values varied between 0.808 and 0.835, with water sources, stand type, and slope contributing most significantly to model performance. In order to determine wildlife ecological corridors, resistance surface maps were created using the species distribution models (SDMs), and bottleneck areas were determined. The Circuit Theory approach was used to model the connections between ecological corridors. As a result of this study, we developed connectivity models for five large mammals based on Circuit Theory, identified priority wildlife ecological corridors, and evaluated critical connection points between two protected areas, Ilgaz Mountain Wildlife Refuge and Gavurdağı Wildlife Refuge. These findings highlight the essential role of ecological corridors in sustaining landscape-level connectivity and supporting the long-term conservation of wide-ranging species. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation Strategies)
Show Figures

Graphical abstract

25 pages, 13903 KB  
Article
Quantitative Analysis about the Spatial Heterogeneity of Water Conservation Services Function Using a Space–Time Cube Constructed Based on Ecosystem and Soil Types
by Yisheng Liu, Peng Hou, Ping Wang, Jian Zhu, Jun Zhai, Yan Chen, Jiahao Wang and Le Xie
Diversity 2024, 16(10), 638; https://doi.org/10.3390/d16100638 - 14 Oct 2024
Cited by 3 | Viewed by 1154
Abstract
Precisely delineating the spatiotemporal heterogeneity of water conservation services function (WCF) holds paramount importance for watershed management. However, the existing assessment techniques exhibit common limitations, such as utilizing only multi-year average values for spatial changes and relying solely on the spatial average values [...] Read more.
Precisely delineating the spatiotemporal heterogeneity of water conservation services function (WCF) holds paramount importance for watershed management. However, the existing assessment techniques exhibit common limitations, such as utilizing only multi-year average values for spatial changes and relying solely on the spatial average values for temporal changes. Moreover, traditional research does not encompass all WCF values at each time step and spatial grid, hindering quantitative analysis of spatial heterogeneity in WCF. This study addresses these limitations by utilizing an improved water balance model based on ecosystem type and soil type (ESM-WBM) and employing the EFAST and Sobol’ method for parameter sensitivity analysis. Furthermore, a space–time cube of WCF, constructed using remote-sensing data, is further explored by Emerging Hot Spot Analysis for the expression of WCF spatial heterogeneity. Additionally, this study investigates the impact of two core parameters: neighborhood distance and spatial relationship conceptualization type. The results reveal that (1) the ESM-WBM model demonstrates high sensitivity toward ecosystem types and soil data, facilitating the accurate assessment of the impacts of ecosystem and soil pattern alterations on WCF; (2) the EHSA categorizes WCF into 17 patterns, which in turn allows for adjustments to ecological compensation policies in related areas based on each pattern; and (3) neighborhood distance and the type of spatial relationships conceptualization significantly impacts the results of EHSA. In conclusion, this study offers references for analyzing the spatial heterogeneity of WCF, providing a theoretical foundation for regional water resource management and ecological restoration policies with tailored strategies. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation Strategies)
Show Figures

Figure 1

Back to TopTop