Application of Natural Bioactive Components to Improve the Nutritional and Health-Related Properties of Food Products

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Nutraceuticals, Functional Foods, and Novel Foods".

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 6014

Special Issue Editor


E-Mail Website
Guest Editor
School of Biological and Food Engineering, Suzhou University, Suzhou, China
Interests: natural products; antioxidation; functional food; human health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on bioactive compounds from natural products, especially those that are homologous to medicine and food. The application of homology of medicine and food has a long history in traditional Chinese medicine. There are many studies which have proved that medicine food homology has effective, long-term edible safety and can prevent disease occurrence and maintain health.

Medicine food homology provides many bioactive compounds like carbohydrates, flavonoids, terpenoids, alkaloids, quinones, and polyphenols that regulate nutrients in health and disease. The Special Issue “Application of Natural Bioactive Components to Improve the Nutritional and Health-Related Properties of Food Products” welcomes the latest findings on medicine food homology and the bioactivity regulation of nutrients in health and disease, including the following aspects:

  • The application of molecular biological techniques in natural products;
  • Bioactive compounds from natural products as a tool for functional food development;
  • The structure–activity relationship, bioactivity, and related mechanisms;
  • Structure and bioactivity screening of functional ingredients from natural products;
  • The mechanism of interaction between bioactive compounds from natural products.

Dr. Kefeng Zhai
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • bioactive compounds
  • bioactivity and the related mechanisms
  • functional ingredients
  • functional food development
  • nutritional and health-related properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3842 KiB  
Article
Variation and Abundance of Resistant Starch in Selected Banana Cultivars in Uganda
by Ali Kajubi, Rhona Baingana, Moses Matovu, Ronald Katwaza, Jerome Kubiriba and Priver Namanya
Foods 2024, 13(18), 2998; https://doi.org/10.3390/foods13182998 - 21 Sep 2024
Viewed by 563
Abstract
The physiochemical, structural, and molecular characteristics of starch influence its functional properties, thereby dictating its utilization. The study aimed to profile the properties and quantity of resistant starch (RS) from 15 different banana varieties, extracted using a combination of alkaline and enzyme treatments. [...] Read more.
The physiochemical, structural, and molecular characteristics of starch influence its functional properties, thereby dictating its utilization. The study aimed to profile the properties and quantity of resistant starch (RS) from 15 different banana varieties, extracted using a combination of alkaline and enzyme treatments. Granular structure and molecular organization were analyzed using light microscopy, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The physiochemical and functional properties were also investigated. RS content ranged from 49% to 80% without significant relationship to amylose (AM) (r = −0.1062). SEM revealed significant microarchitectural differences on the granules potentially affecting granule digestibility. FTIR and chemometrics identified differences in the crystalline peaks, yielding varying degrees of the molecular order of the RS polymers that aid in differentiating the RS sources. Despite similar solubility and swelling profiles, the pasting profiles varied across varieties, indicating high paste stability in hydrothermal processing. Clarity ranged from 43% to 93%, attributed to amylose leaching. This study highlights that RS from bananas varies in quantity, structure, and functionality, necessitating individualized approaches for processing and utilization. Full article
Show Figures

Figure 1

20 pages, 4050 KiB  
Article
Pleurocinus ostreatus Polysaccharide Alleviates Cyclophosphamide-Induced Immunosuppression through the Gut Microbiome, Metabolome, and JAK/STAT1 Signaling Pathway
by Daiyao Liu, Abdul Mueed, He Ma, Tianci Wang, Ling Su and Qi Wang
Foods 2024, 13(17), 2679; https://doi.org/10.3390/foods13172679 - 25 Aug 2024
Viewed by 726
Abstract
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it [...] Read more.
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it also contained galactose (2.97%), mannose (5.02%), fucose (0.3%), arabinose (0.21%), ribose (0.04%), galactose acid (0.17%), and glucose acid (1.45%). After POP-1 was administered to immunosuppressed mice, results showed that POP-1 increased the body weight, spleen, and thymus index and enhanced T lymphocyte proliferation in mice. POP-1 up-regulated the expression of CD3+, CD4+, and CD8+ lymphocytes and the ratio of CD4+/CD8+ in the mouse spleen to increase immunoglobulin (IgM, IgG, and IgA) and secrete cytokines (IL-2, IL-6, TNF-α, and IFN-γ) through activation of the JAK/STAT1 signaling pathway. Moreover, POP-1 remarkably reversed the gut-microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Muribaculaceae, Lactobacillaceae, Blautia, and Ligilactobacillus and altered the fecal metabolites by increasing hexahomomethionine, DG(8:0/20:4(5Z, 8Z, 11Z, 14Z)-OH(20)/0:0, 2-((3-aminopyridin-2-yl)methylene)hydrazinecarbothioamide, Ginkgoic acid, and carboxy-ethyl-hydroxychroman, which is closely related to the immunity function. This study indicates that P. ostreatus polysaccharide effectively restores immunosuppressive activity and can be a functional ingredient in food and pharmaceutical products. Full article
Show Figures

Figure 1

21 pages, 6646 KiB  
Article
Extraction, Purification, Sulfated Modification, and Biological Activities of Dandelion Root Polysaccharides
by Xiao Wu, Na Li, Zeng Dong, Qin Yin, Tong Zhou, Lixiang Zhu, Hanxi Yan, Ziping Chen and Kefeng Zhai
Foods 2024, 13(15), 2393; https://doi.org/10.3390/foods13152393 - 29 Jul 2024
Cited by 1 | Viewed by 797
Abstract
In this study, polysaccharides were extracted at a rate of 87.5% ± 1.5% from native dandelion roots, and the dandelion root polysaccharides (DRPs) were then chemically modified to obtain sulfated polysaccharides (SDRPs) with a degree of substitution of 1.49 ± 0.07. The effects [...] Read more.
In this study, polysaccharides were extracted at a rate of 87.5% ± 1.5% from native dandelion roots, and the dandelion root polysaccharides (DRPs) were then chemically modified to obtain sulfated polysaccharides (SDRPs) with a degree of substitution of 1.49 ± 0.07. The effects of modification conditions, physicochemical characterizations, structural characteristics, antioxidant properties, hypoglycemic activity, and proliferative effects on probiotics of DRP derivatives were further investigated. Results showed that the optimum conditions for sulfation of DRPs included esterification reagents (concentrated sulfuric acid: n-butanol) ratio of 3:1, a reaction temperature of 0 °C, a reaction time of 1.5 h, and the involvement of 0.154 g of ammonium sulfate. The DRPs and SDRPs were composed of six monosaccharides, including mannose, glucosamine, rhamnose, glucose, galactose, and arabinose. Based on infrared spectra, the peaks of the characteristic absorption bands of S=O and C-O-S appeared at 1263 cm−1 and 836 cm−1. Compared with DRPs, SDRPs had a significantly lower relative molecular mass and a three-stranded helical structure. NMR analysis showed that sulfated modification mainly occurred on the hydroxyl group at C6. SDRPs underwent a chemical shift to higher field strength, with their characteristic signal peaking in the region of 1.00–1.62 ppm. Scanning electron microscopy (SEM) analysis indicated that the surface morphology of SDRPs was significantly changed. The structure of SDRPs was finer and more fragmented than DRPs. Compared with DRPs, SDRPs showed better free radical scavenging ability, higher Fe2+chelating ability, and stronger inhibition of α-glucosidase and α-amylase. In addition, SDRPs had an excellent promotional effect on the growth of Lactobacillus plantarum 10665 and Lactobacillus acidophilus. Therefore, this study could provide a theoretical basis for the development and utilization of DRPs. Full article
Show Figures

Figure 1

14 pages, 2644 KiB  
Article
Combined Effects of Ziziphus jujuba, Dimocarpus longan, and Lactuca sativa on Sleep-Related Behaviors through GABAergic Signaling
by Gi Yeon Bae, Kayoung Ko, Eunseon Yang, Sung-Soo Park, Hyung Joo Suh and Ki-Bae Hong
Foods 2024, 13(1), 1; https://doi.org/10.3390/foods13010001 - 19 Dec 2023
Viewed by 1542
Abstract
We aimed to analyze the increase in the sleep-promoting effects based on the mixed ratio of botanical extracts, Ziziphus jujuba seeds, Dimocarpus longan fruits, and Lactuca sativa leaves, using animal models. Behavioral analyses, including an analysis of the total sleep time of Drosophila [...] Read more.
We aimed to analyze the increase in the sleep-promoting effects based on the mixed ratio of botanical extracts, Ziziphus jujuba seeds, Dimocarpus longan fruits, and Lactuca sativa leaves, using animal models. Behavioral analyses, including an analysis of the total sleep time of Drosophila melanogaster, were conducted to select the optimal mixed ratio of the three botanical extracts. The effects were verified in a caffeine-induced sleepless model, specific neurotransmitter receptor antagonists, and ICR mice. In D. melanogaster exposed to 2.0% of each extract, group behavior was significantly reduced, and the mixed extracts of Z. jujuba, D. longan, and L. sativa (4:1:1 and 1:4:1) significantly increased the total sleep time with individual fruit flies. In the caffeine-induced insomnia model, mixed extracts (4:1:1 and 1:4:1) led to the highest increase in total sleep time. An analysis of locomotor ability revealed a significant reduction in the mobility percentage in the mixed extract groups (0:0:1, 1:0:1, 1:1:1, 4:1:1, and 1:4:1). The administration of Z. jujuba extract and mixed extracts (4:1:1) significantly increased the expression of GABAA-R, whereas the administration of the mixed extracts (4:1:1) and (1:4:1) significantly increased the expression of GABAB-R1 and GABAB-R2, respectively. D. longan extract and the mixed ratio (1:4:1) reduced the subjective nighttime movement and increased the total sleep time in the presence of flumazenil. An analysis of ICR mice indicated that the administration of mixed extracts (4:1:1) significantly increased sleep duration in a dose-dependent manner. These results indicated that the mixed ratio of Z. jujuba, D. longan, and L. sativa extracts, particularly the mixed ratio of 4:1:1, may have sleep-enhancing effects in fruit flies and mice. The study also identified changes in gene expression related to GABA receptors, indicating the potential mechanism for the observed sleep-promoting effects. Full article
Show Figures

Figure 1

16 pages, 5757 KiB  
Article
Fabrication and Characterization of Complex Coacervation: The Integration of Sesame Protein Isolate-Polysaccharides
by Zeng Dong, Shirong Yu, Kefeng Zhai, Nina Bao, Marwan M. A. Rashed and Xiao Wu
Foods 2023, 12(19), 3696; https://doi.org/10.3390/foods12193696 - 8 Oct 2023
Cited by 4 | Viewed by 1721
Abstract
The exceptional biocompatibility of emulsion systems that rely on stabilizing protein–polysaccharide particles presents extensive possibilities for the transportation of bioactive carriers, making them highly promising for various biological applications. The current work aimed to explore the phenomenon of complex coacervation between sesame protein [...] Read more.
The exceptional biocompatibility of emulsion systems that rely on stabilizing protein–polysaccharide particles presents extensive possibilities for the transportation of bioactive carriers, making them highly promising for various biological applications. The current work aimed to explore the phenomenon of complex coacervation between sesame protein isolate (SPI) and four distinct polysaccharides, namely, Arabic gum (GA), carrageenan (CAR), sodium carboxymethyl cellulose (CMC), and sodium alginate (SA). The study objective was achieved by fabricating emulsions through the blending of these polymers with oil at their maximum turbidity level (φ = 0.6), followed by the measurement of their rheological properties. The turbidity, ζ-potential, and particle size were among the techno-parameters analyzed to assess the emulsion stability. The microstructural characterization of the emulsions was conducted using both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Furthermore, the functional properties were examined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The SPI incorporated with SA, CMC, and CAR reached the maximum turbidity (0.2% w/v) at a ratio of 4:1, corresponding to the pH values of 4.5, 3, or 3.5, respectively. The SPI–GA mixture exhibited the maximum turbidity at a ratio of 10:1 and pH 4.5. Results from the FTIR and XRD analyses provided evidence of complex formation between SPI and the four polysaccharides, with the electrostatic and hydrogen bond interactions facilitating the binding of SPI to these polysaccharides. SPI was bound to the four polysaccharides through electrostatic and hydrogen bond interactions. The SPI–CMC and SPI–SA emulsions were more stable after two weeks of storage. Full article
Show Figures

Figure 1

Back to TopTop