New Perspectives in Intelligent Transportation Systems and Mobile Communications towards a Smart Cities Context

A special issue of Future Internet (ISSN 1999-5903).

Deadline for manuscript submissions: closed (31 December 2018) | Viewed by 40677

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Engineering and Architecture, Kore University of Enna, 94100 Enna, Italy
Interests: wireless sensor networks; intelligent transportation systems; Internet of Things; green communications; fuzzy logic
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Faculty of Engineering and Architecture, Kore University of Enna, Enna, Italy
Interests: intelligent transportation systems; traffic light management; inter-vehicle and vehicle-to-infrastructure communications; traffic operations management and control
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Engineering and Architecture, University of Enna Kore, Cittadella Universitaria, 94100 Enna (EN), Italy
Interests: sustainable and resilient mobility; shared mobility; microscopic traffic simulation; active mobility; planning for accessibility
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Future smart cities will be based, both, on intelligent transportation solutions and smart information and communication technologies. For this reason, these topics have attracted considerable interest in the research and development of smarter communication protocols. In fact, in recent years, important advancements in Intelligent Transportation Systems (ITS) have been found in the evolution of in-vehicle systems by the application of artificial intelligence, in the connection of in-vehicle devices by wireless networks, and in in-vehicle services for autonomous driving using high-precision positioning and sensing systems. Furthermore, there has also been a meaningful improvement in mobile ad hoc and sensor networks and ubiquitous services in the area of mobile communications. It is clear that a sound synergy between ITS solutions and mobile communications can concretely open new perspectives for future smart cities.

This Special Issue solicits the submission of high-quality and unpublished papers that aim to solve open technical problems and challenges typical of mobile communications for ITS, integrating novel approaches efficiently, and focusing on the performance evaluation and comparison with existing solutions. Both theoretical and experimental studies for typical and future ITS scenarios are encouraged. Furthermore, also high-quality review and survey papers are welcome.

Specific Topics

Topics of interest include, but are not limited to:

  • Information and Communication Technologies (ICT) for Transportation Systems
  • Smart Decision Systems (e.g., expert systems and intelligent agents)
  • Control Systems (e.g., adaptive, fuzzy, cooperative, neuro) for Transportation Networks
  • Driver and Traveler Support Systems
  • Renewable Energy-Based Vehicles for Green Transportation
  • Traffic Operations Management and Control
  • New Traffic Control Concepts that promote communications-based traffic control
  • Green Mobility and Intelligent Transportation Technology
  • Inter-vehicle and Vehicle-to-Infrastructure Communications
  • Future Network Architecture for Green Intelligent Transportation Systems
  • Energy Efficiency Content Delivery over Intelligent Transportation Systems
  • Internet of Vehicles (IoV) for improving ITS
  • Green and Sustainable Storage Designs for Intelligent Transportation Systems
  • Trust, Security, and Privacy in Transportation Network
  • Context and Location-Aware Intelligent Transportation Systems

Prof. Giovanni Pau
Dr. Alessandro Severino
Dr. Antonino Canale
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Future Internet is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

3 pages, 154 KiB  
Editorial
Special Issue “New Perspectives in Intelligent Transportation Systems and Mobile Communications towards a Smart Cities Context”
by Giovanni Pau, Alessandro Severino and Antonino Canale
Future Internet 2019, 11(11), 228; https://doi.org/10.3390/fi11110228 - 28 Oct 2019
Cited by 23 | Viewed by 3817
Abstract
Intelligent transportation solutions and smart information and communication technologies will be the core of future smart cities. For this purpose, these topics have captivated noteworthy interest in the investigation and construction of cleverer communication protocols or the application of artificial intelligence in the [...] Read more.
Intelligent transportation solutions and smart information and communication technologies will be the core of future smart cities. For this purpose, these topics have captivated noteworthy interest in the investigation and construction of cleverer communication protocols or the application of artificial intelligence in the connection of in-vehicle devices by wireless networks, and in in-vehicle services for autonomous driving using high-precision positioning and sensing systems. This special issue has focused on the collection of high-quality papers aimed at solving open technical problems and challenges typical of mobile communications for Intelligent Transportation Systems. Full article

Research

Jump to: Editorial, Review

20 pages, 3544 KiB  
Article
Research on a Support System for Automatic Ship Navigation in Fairway
by Van Suong Nguyen
Future Internet 2019, 11(2), 38; https://doi.org/10.3390/fi11020038 - 3 Feb 2019
Cited by 5 | Viewed by 5770
Abstract
In previous investigations, controllers for the track-keeping of ships were designed with the assumption of constant ship speed. However, when navigating in a fairway area, the ship’s speed is usually decreased to prepare for berthing. The existing track-keeping systems, which are applied when [...] Read more.
In previous investigations, controllers for the track-keeping of ships were designed with the assumption of constant ship speed. However, when navigating in a fairway area, the ship’s speed is usually decreased to prepare for berthing. The existing track-keeping systems, which are applied when the ship navigates in the open sea with a constant ship speed, cannot be used to navigate the ship in the fairway. In this article, a support system is proposed for ship navigation in the fairway. This system performs three tasks. First, the ship is automatically controlled by regulating the rudder to follow planned tracks. Second, the ship’s speed is reduced step by step to approach the berth area at a low speed. Finally, at low speed, when the ship’s rudder is not effective enough to control the ship’s heading to a desired angle, the ship’s heading is adjusted appropriately by the bow thruster before changing the control mode into the automatic berthing system. By the proposed system, the automatic systems can be combined to obtain a fully automatic system for ship control. To validate the effectiveness of this proposed system for automatic ship navigation in the fairway, numerical simulations were conducted with a training ship model. Full article
Show Figures

Figure 1

20 pages, 1248 KiB  
Article
A Crowdsensing Platform for Monitoring of Vehicular Emissions: A Smart City Perspective
by Marianne Silva, Gabriel Signoretti, Julio Oliveira, Ivanovitch Silva and Daniel G. Costa
Future Internet 2019, 11(1), 13; https://doi.org/10.3390/fi11010013 - 8 Jan 2019
Cited by 36 | Viewed by 5344
Abstract
Historically, cities follow reactive planning models where managers make decisions as problems occur. On the other hand, the exponential growth of Information and Communication Technologies (ICT) has allowed the connection of a diverse array of sensors, devices, systems, and objects. These objects can [...] Read more.
Historically, cities follow reactive planning models where managers make decisions as problems occur. On the other hand, the exponential growth of Information and Communication Technologies (ICT) has allowed the connection of a diverse array of sensors, devices, systems, and objects. These objects can then generate data that can be transformed into information and used in a more efficient urban planning paradigm, one that allows decisions to be made before the occurrence of problems and emergencies. Therefore, this article aims to propose a platform capable of estimating the amount of carbon dioxide based on sensor readings in vehicles, indirectly contributing to a more proactive city planning based on the monitoring of vehicular pollution. Crowdsensing techniques and an On-Board Diagnostic (OBD-II) reader are used to extract data from vehicles in real time, which are then stored locally on the devices used to perform data collection. With the performed experiments, it was possible to extract information about the operation of the vehicles and their dynamics when moving in a city, providing valuable information that can support auxiliary tools for the management of urban centers. Full article
Show Figures

Figure 1

18 pages, 5738 KiB  
Article
The Optimization of Marine Diesel Engine Rotational Speed Control Process by Fuzzy Logic Control Based on Particle Swarm Optimization Algorithm
by Tien Anh Tran
Future Internet 2018, 10(10), 99; https://doi.org/10.3390/fi10100099 - 4 Oct 2018
Cited by 14 | Viewed by 6174
Abstract
The marine main diesel engine rotational speed automatic control plays a significant role in determining the optimal main diesel engine speed under impacting on navigation environment conditions. In this article, the application of fuzzy logic control theory for main diesel engine speed control [...] Read more.
The marine main diesel engine rotational speed automatic control plays a significant role in determining the optimal main diesel engine speed under impacting on navigation environment conditions. In this article, the application of fuzzy logic control theory for main diesel engine speed control has been associated with Particle Swarm Optimization (PSO). Firstly, the controller is designed according to fuzzy logic control theory. Secondly, the fuzzy logic controller will be optimized by Particle Swarm Optimization (PSO) in order to obtain the optimal adjustment of the membership functions only. Finally, the fuzzy logic controller has been completely innovated by Particle Swarm Optimization algorithm. The study results will be represented under digital simulation form, as well as comparison between traditional fuzzy logic controller with fuzzy logic control–particle swarm optimization speed controller being obtained. Full article
Show Figures

Figure 1

15 pages, 2557 KiB  
Article
Optimal Design of Demand-Responsive Feeder Transit Services with Passengers’ Multiple Time Windows and Satisfaction
by Bo Sun, Ming Wei and Senlai Zhu
Future Internet 2018, 10(3), 30; https://doi.org/10.3390/fi10030030 - 12 Mar 2018
Cited by 26 | Viewed by 5937
Abstract
This paper presents a mixed-integer linear programming model for demand-responsive feeder transit services to assign vehicles located at different depots to pick up passengers at the demand points and transport them to the rail station. The proposed model features passengers’ one or several [...] Read more.
This paper presents a mixed-integer linear programming model for demand-responsive feeder transit services to assign vehicles located at different depots to pick up passengers at the demand points and transport them to the rail station. The proposed model features passengers’ one or several preferred time windows for boarding vehicles at the demand point and their expected ride time. Moreover, passenger satisfaction that was related only to expected ride time is fully accounted for in the model. The objective is to simultaneously minimize the operation costs of total mileage and maximize passenger satisfaction. As the problem is an extension of the nondeterministic polynomial problem with integration of the vehicle route problem, this study further develops an improved bat algorithm to yield meta-optimal solutions for the model in a reasonable amount of time. When this was applied to a case study in Nanjing City, China, the mileage and satisfaction of the proposed model were reduced by 1.4 km and increased by 7.1%, respectively, compared with the traditional model. Sensitivity analyses were also performed to investigate the impact of the number of designed bus routes and weights of objective functions on the model performance. Finally, a comparison of Cplex, standard bat algorithm, and group search optimizer is analyzed to verify the validity of the proposed algorithm. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

15 pages, 3514 KiB  
Review
A Review of Vehicle to Vehicle Communication Protocols for VANETs in the Urban Environment
by Irshad Ahmed Abbasi and Adnan Shahid Khan
Future Internet 2018, 10(2), 14; https://doi.org/10.3390/fi10020014 - 31 Jan 2018
Cited by 71 | Viewed by 12392
Abstract
Vehicular Ad-hoc Networks (VANETs) have been gaining significant attention from the research community due to their increasing importance for building an intelligent transportation system. The characteristics of VANETs, such as high mobility, network partitioning, intermittent connectivity and obstacles in city environments, make routing [...] Read more.
Vehicular Ad-hoc Networks (VANETs) have been gaining significant attention from the research community due to their increasing importance for building an intelligent transportation system. The characteristics of VANETs, such as high mobility, network partitioning, intermittent connectivity and obstacles in city environments, make routing a challenging task. Due to these characteristics of VANETs, the performance of a routing protocol is degraded. The position-based routing is considered to be the most significant approach in VANETs. In this paper, we present a brief review of most significant position based unicast routing protocols designed for vehicle to vehicle communications in the urban environment. We provide them with their working features for exchanging information between vehicular nodes. We describe their pros and cons. This study also provides a comparison of the vehicle to vehicle communication based routing protocols. The comparative study is based on some significant factors such as mobility, traffic density, forwarding techniques and method of junction selection mechanism, and strategy used to handle a local optimum situation. It also provides the simulation based study of existing dynamic junction selection routing protocols and a static junction selection routing protocol. It provides a profound insight into the routing techniques suggested in this area and the most valuable solutions to advance VANETs. More importantly, it can be used as a source of references to other researchers in finding literature that is relevant to routing in VANETs. Full article
Show Figures

Figure 1

Back to TopTop