ijms-logo

Journal Browser

Journal Browser

Physiology and Molecular Biology of Plant Stress Tolerance: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 9531

Special Issue Editor

Special Issue Information

Dear Colleagues,

Plants in the natural environment are constantly challenged by changes in the environment, including abiotic and biotic stresses. Abiotic stresses such as drought, salt, heat, cold, and nutrient deficiency adversely affect plant growth, development, and productivity. Biotic stress, such as bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and cultivated or native plants, is a major focus of agricultural research due to the vast economic losses caused to cash crops. Plants have evolved a series of regulatory mechanisms to cope with stress in the process of adapting to abiotic or biotic stress. Studying the regulatory mechanisms of plant stress tolerance to adversity is beneficial in selecting excellent resistant varieties.

This Special Issue aims to provide a platform for research on the physiology and molecular biology of plant stress tolerance. We believe that this Special Issue will be helpful to researchers and to the improvement of plants’ tolerance to stresses in the future. We welcome your submission of original papers and reviews containing molecular results.

Prof. Dr. De-Guo Han
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant–pathogen interactions
  • biotic and abiotic stress
  • plant innate immunity
  • phytohormones
  • genes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 5776 KiB  
Article
The Apple Mitogen-Activated Protein Kinase MdMAPK6 Increases Drought, Salt, and Disease Resistance in Plants
by Mengru Li, Huaina Gao, Minmin Zhou, Yali Zhang, Han Jiang and Yuanyuan Li
Int. J. Mol. Sci. 2025, 26(7), 3245; https://doi.org/10.3390/ijms26073245 - 31 Mar 2025
Viewed by 147
Abstract
As sessile organisms, plants are exposed to a variety of environmental stresses caused by biotic and abiotic factors during their life cycle; as a result, plants have evolved complex defense mechanisms to cope with these stresses, among which the mitogen-activated protein kinase cascade [...] Read more.
As sessile organisms, plants are exposed to a variety of environmental stresses caused by biotic and abiotic factors during their life cycle; as a result, plants have evolved complex defense mechanisms to cope with these stresses, among which the mitogen-activated protein kinase cascade signaling pathway is particularly critical. This study focused on MdMAPK6, a specific mitogen-activated protein kinase gene in Malus domestica, to illuminate its functions in stress responses. MdMAPK6 was successfully cloned from apple and shown to respond to various stressors, including drought, salt, and abscisic acid. Overexpressing MdMAPK6 in apple calli resulted in enhanced resistance to drought, salt, and Botryosphaeria dothidea. Ectopic expression of MdMAPK6 in Arabidopsis thaliana enhanced the resistance to drought, salt, and Pseudomonas syringae pathovar tomato DC3000. These results indicated that MdMAPK6 in apples is a traditional mitogen-activated protein kinase, which plays an important role in both biotic and abiotic stresses. Full article
Show Figures

Figure 1

20 pages, 19343 KiB  
Article
AcMYB176-Regulated AcCHS5 Enhances Salt Tolerance in Areca catechu by Modulating Flavonoid Biosynthesis and Reactive Oxygen Species Scavenging
by Yiqi Jiang, Noor Muhammad Khan, Akhtar Ali, Guangzhen Zhou, Yue Zhou, Panjing Li and Yinglang Wan
Int. J. Mol. Sci. 2025, 26(7), 3216; https://doi.org/10.3390/ijms26073216 - 30 Mar 2025
Viewed by 216
Abstract
High-salinity stress induces severe oxidative damage in plants, leading to growth inhibition through cellular redox imbalance. Chalcone synthase (CHS), a pivotal enzyme in the flavonoid biosynthesis pathway, plays critical roles in plant stress adaptation. However, the molecular mechanisms underlying CHS-mediated salt tolerance remain [...] Read more.
High-salinity stress induces severe oxidative damage in plants, leading to growth inhibition through cellular redox imbalance. Chalcone synthase (CHS), a pivotal enzyme in the flavonoid biosynthesis pathway, plays critical roles in plant stress adaptation. However, the molecular mechanisms underlying CHS-mediated salt tolerance remain uncharacterized in Areca catechu L., a tropical crop of high economic and ecological significance. Here, we systematically identified the CHS gene family in A. catechu and revealed tissue-specific and salt-stress-responsive expression patterns, with AcCHS5 exhibiting the most pronounced induction under salinity. Transgenic Arabidopsis overexpressing AcCHS5 displayed enhanced salt tolerance compared to wild-type plants, characterized by elevated activities of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), increased flavonoid accumulation, and reduced reactive oxygen species (ROS) accumulation. Furthermore, we identified the transcription factor AcMYB176 as a direct activator of AcCHS5 through binding to its promoter. Our findings demonstrate that the AcMYB176-AcCHS5 regulatory module enhances salt tolerance by orchestrating flavonoid biosynthesis and ROS scavenging. This study provides functional evidence of CHS-mediated salt adaptation in A. catechu and highlights its potential for improving stress resilience in tropical crops. Full article
Show Figures

Figure 1

11 pages, 1391 KiB  
Article
DNA Demethylase ROS1 Interferes with DNA Methylation and Activates Stress Response Genes in Plants Infected with Beet Severe Curly Top Virus
by Taicheng Jin, Yushuo Li, Xu Sun, Yidi Li, Zhuyi Xiao, Weiyan Wang, Jiaxue Yu and Liping Yang
Int. J. Mol. Sci. 2025, 26(6), 2807; https://doi.org/10.3390/ijms26062807 - 20 Mar 2025
Viewed by 225
Abstract
DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation [...] Read more.
DNA methylation is one mechanism of epigenetic regulation in plants. Small interfering RNAs (siRNAs) targeted endogenous genes and caused the promoters to be hypermethylated, namely RNA-directed DNA methylation (RdDM). Repressor of silencing 1 (ROS1) is an active DNA demethylase involved in the regulation of DNA methylation. This study indicates that ROS1-mediated DNA demethylation plays important roles in regulating the expression of these stress response genes and in response to biotic stresses. Further experiments confirmed that the expression level of the ROS1 gene was significantly upregulated in A. thaliana plants infected with beet severe curly top virus (BSCTV). Moreover, the DNA sequencing results demonstrated that ROS1 interferes with DNA methylation of repeat regions in the promoters of ACD6, GSTF14, and ACO3 in A. thaliana plants infected with BSCTV. These findings reveal the epigenetic mechanisms by which ROS1 regulates the expression of the stress response genes, thereby improving the adaptability of plants to biotic stresses. Full article
Show Figures

Figure 1

19 pages, 7411 KiB  
Article
Genome-Wide Identification and Expression Assessment for the Phosphate Transporter 2 Gene Family Within Sweet Potato Under Phosphorus Deficiency Stress
by Hongyang Li, Cici Bao, Huixian Xing, Xin Guo, Shujuan Wang, Xianming Zhou, Yanhui Lin and Chengcheng Si
Int. J. Mol. Sci. 2025, 26(6), 2681; https://doi.org/10.3390/ijms26062681 - 17 Mar 2025
Viewed by 222
Abstract
Hainan’s unique climate significantly contributes to soil acidification, causing phosphorus fixation into insoluble compounds, leading to phosphorus deficiency and reduced yield in sweet potatoes. The Phosphate Transporter 2 (PHT2) family, a group of trans-membrane phosphate transporters, is crucial for phosphate transport, distribution, and [...] Read more.
Hainan’s unique climate significantly contributes to soil acidification, causing phosphorus fixation into insoluble compounds, leading to phosphorus deficiency and reduced yield in sweet potatoes. The Phosphate Transporter 2 (PHT2) family, a group of trans-membrane phosphate transporters, is crucial for phosphate transport, distribution, and homeostasis regulation. Two PHT2 genes, IbPHT2-1 and IbPHT2-2, were first identified in sweet potato, and a phylogenetic analysis of 46 species showed high conservation of the IbPHT2 gene family throughout plant evolution. Tissue-specific expression patterns of IbPHT2 genes were determined in four sweet potato varieties using transcriptome analysis and RT-qPCR. The results demonstrated that IbPHT2 was predominantly expressed in shoots, mature leaves, stems, and fibrous roots. Under phosphorus deficiency stress, IbPHT2-2 expression was upregulated in shoots, mature leaves, and fibrous roots, with higher expression in mature leaves compared to IbPHT2-1. This observation suggests that, in the context of phosphorus deficiency stress, IbPHT2-2 assumes a more pivotal function in the response mechanism. The expression levels of IbPHT2-2 presented a negative relationship with fresh leaf weight (FLW) as well as fibrous root number per plant (FRNPP) and fibrous root weight per plant (FRWPP) based on correlation analysis. The restrictive function of IbPHT2-2 became impaired by phosphorus deficiency, which resulted in inhibited leaf and root development of sweet potato. The findings of this study provide preliminary evidence that IbPHT2-2 is a key gene involved in the response to phosphorus deficiency stress, influencing phosphorus absorption and distribution in sweet potato. This research contributes to our understanding of the molecular mechanisms underlying phosphorus utilization in sweet potato and may inform future strategies for improving phosphorus use efficiency in this important crop. Full article
Show Figures

Figure 1

18 pages, 2607 KiB  
Article
Phenotypic Physiological and Metabolomic Analyses Reveal Crucial Metabolic Pathways in Quinoa (Chenopodium quinoa Willd.) in Response to PEG-6000 Induced Drought Stress
by Qinghan Bao, Yang Wu, Huishi Du, Yang Wang and Yongping Zhang
Int. J. Mol. Sci. 2025, 26(6), 2599; https://doi.org/10.3390/ijms26062599 - 13 Mar 2025
Viewed by 387
Abstract
Drought stress seriously threatens human food security, and enhancing crops’ drought tolerance is an urgent problem to be solved in breeding. Quinoa is known for its high nutritional value and strong drought tolerance, but its molecular mechanism in response to drought stress is [...] Read more.
Drought stress seriously threatens human food security, and enhancing crops’ drought tolerance is an urgent problem to be solved in breeding. Quinoa is known for its high nutritional value and strong drought tolerance, but its molecular mechanism in response to drought stress is still unclear. In this study, we used drought-tolerant (D2) and drought-sensitive (ZK1) quinoa varieties, and PEG-6000 was used to simulate drought stress in quinoa seedlings. Phenotypic and physiological biochemical indicators were measured during the seedling stage, and LC-MS was used for a metabolite analysis of drought stress to explore the drought tolerance mechanism of quinoa under drought stress. With the intensification of drought stress, chlorophyll content gradually increased, and D2 reached its maximum at W4, an increase of 49.85% compared with W1. The total chlorophyll content, photosynthesis rate, and stomatal conductance of ZK1 were significantly lower than D2 under moderate and severe drought stress. Metabolomic results showed that a total of 1295 positive ion mode (pos) metabolites and 914 negative ion mode (neg) metabolites were identified. Of these, 12(R)-HETE, phosphatidylcholine, monogalactose diester (MGDG), and stachyose up-regulated expression under drought stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that unsaturated fatty acid biosynthesis and glycerophospholipid metabolism pathways were significantly enriched. In summary, our results elucidate that quinoa responds to drought stress by accumulating chlorophyll and sugars, activating unsaturated fatty acid metabolism, and protecting the photosynthetic system. These findings provide new insights for the breeding of drought-tolerant quinoa varieties and the study of drought tolerance mechanisms. Full article
Show Figures

Figure 1

17 pages, 3084 KiB  
Article
Wheat Chromatin Remodeling Protein TaSWP73 Contributes to Compatible Wheat–Powdery Mildew Interaction
by Yixian Fu, Zige Yang, Jiao Liu, Xiaoyu Wang, Haoyu Li, Pengfei Zhi and Cheng Chang
Int. J. Mol. Sci. 2025, 26(6), 2590; https://doi.org/10.3390/ijms26062590 - 13 Mar 2025
Viewed by 322
Abstract
Wheat powdery mildew disease caused by the obligate biotrophic fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) seriously threatens global wheat production. Although improved powdery mildew resistance is an aim in wheat breeding, the regulatory mechanism underlying the wheat–B.g. [...] Read more.
Wheat powdery mildew disease caused by the obligate biotrophic fungal pathogen Blumeria graminis forma specialis tritici (B.g. tritici) seriously threatens global wheat production. Although improved powdery mildew resistance is an aim in wheat breeding, the regulatory mechanism underlying the wheat–B.g. tritici interaction remains poorly understood. In this study, the wheat chromatin remodeling protein TaSWP73 was identified as a negative regulator of post-penetration resistance against B.g. tritici. The transient overexpression of TaSWP73 attenuates wheat post-penetration resistance against B.g. tritici, while the silencing of TaSWP73 potentiates salicylic acid (SA) biosynthesis and activates post-penetration resistance against B.g. tritici. Importantly, chromatin in the promoter regions of TaSARD1, an activator gene of SA biosynthesis, is marked by high nucleosome occupancy in the TaSWP73-silenced wheat leaves. The silencing of TaSARD1 could suppress SA biosynthesis and attenuate post-penetration resistance against B.g. tritici with a lack of TaSWP73. In addition, TaICS1 was characterized as an essential component of wheat SA biosynthetic machinery. Potentiated SA biosynthesis and increased post-penetration resistance against B.g. tritici with a lack of TaSWP73 could be suppressed by the silencing of TaICS1 expression. These results collectively support the hypothesis that the wheat chromatin remodeling protein TaSWP73 contributes to the compatible wheat–powdery mildew interaction presumably via the suppression of the TaSARD1-TaICS1-SA pathway. Full article
Show Figures

Figure 1

16 pages, 16494 KiB  
Article
Genome-Wide Analysis of the JAZ Gene Family in Potato and Functional Verification of StJAZ23 Under Drought Stress
by Zhuanfang Pu, Tianyuan Qin, Yihao Wang, Xiangdong Wang, Ningfan Shi, Panfeng Yao, Yuhui Liu, Jiangping Bai, Zhenzhen Bi and Chao Sun
Int. J. Mol. Sci. 2025, 26(5), 2360; https://doi.org/10.3390/ijms26052360 - 6 Mar 2025
Viewed by 554
Abstract
The JASMONATE-ZIM DOMAIN (JAZ) repressors are crucial proteins in the jasmonic acid signaling pathway that play a significant role in plant growth, development and response to abiotic stress (such as drought, heat, salinity, and low temperature). In this study, we identified 26 potato [...] Read more.
The JASMONATE-ZIM DOMAIN (JAZ) repressors are crucial proteins in the jasmonic acid signaling pathway that play a significant role in plant growth, development and response to abiotic stress (such as drought, heat, salinity, and low temperature). In this study, we identified 26 potato JAZ genes and classified the corresponding predicted proteins into five subfamilies. All potato JAZ proteins exhibited the expected conserved TIFY (TIF[F/Y] XG) and JAZ domains. Additionally, we identified several stress-responsive cis-regulatory elements, notably ABRE and ARE in the promoters of the JAZ gene family. Whole transcriptome and gene family expression analysis identified StJAZ23 as a key gene responding to drought stress in the root tissues of the Atlantic (Atl) and Qingshu 9 (QS9) potato cultivars. The StJAZ23 gene was cloned, and subcellular localization analysis suggested that the StJAZ23 protein was mainly localized in the nucleus and cell membrane. This study confirmed that StJAZ23 plays a role in drought stress by analyzing several StJAZ23 overexpression (OE-3, OE-5, and OE-6) and RNA interference (RNAi-3, RNAi-6, and RNAi-13) transgenic potato lines. The OE lines displayed significantly increased StJAZ23 expression compared to wild-type (WT) plants, while RNAi lines exhibited significantly reduced expression. The total root length, root tip count, and root surface area were significantly enhanced in OE lines under drought stress, compared to WT plants, whereas RNAi lines showed significant reductions. StJAZ23 overexpression also increased the activities of SOD, POD, CAT, and root vigor under drought stress and JA and ABA hormone levels were also significantly increased in roots under drought stress. These results highlight the positive role of the StJAZ23 gene in enhancing potato resilience to drought stress. Full article
Show Figures

Figure 1

17 pages, 7061 KiB  
Article
Functional Characterization of CsBAS1, CsSND1, and CsIRX6 in Cucumber Defense Against Meloidogyne incognita
by Shihui Li, Xueyun Wang, Lihong Gao, Yongqiang Tian and Si Ma
Int. J. Mol. Sci. 2025, 26(5), 2133; https://doi.org/10.3390/ijms26052133 - 27 Feb 2025
Cited by 1 | Viewed by 372
Abstract
Vascular tissue development plays a pivotal role in plant growth and defense against biotic stress. Root-knot nematodes, particularly Meloidogyne incognita (M. incognita), are globally distributed phytopathogens that cause severe economic losses in a variety of vascular plants. In this study, three [...] Read more.
Vascular tissue development plays a pivotal role in plant growth and defense against biotic stress. Root-knot nematodes, particularly Meloidogyne incognita (M. incognita), are globally distributed phytopathogens that cause severe economic losses in a variety of vascular plants. In this study, three vascular bundle development-related genes, including CsBAS1, CsSND1, and CsIRX6, were identified in cucumber. Tissue-specific expression analysis revealed that CsSND1 and CsIRX6 were highly expressed in roots. Infection with M. incognita showed dynamic expression changes for CsBAS1, CsSND1, and CsIRX6. Specially, CsIRX6 and CsSND1 were upregulated at 14 days post-inoculation (dpi), while CsBAS1 was downregulated at both 7 dpi and 14 dpi. Tissue localization studies using promoter–GUS constructs demonstrated pCsBAS1-GUS and pCsSND1-GUS activity in galls and specific vascular tissues, while CsIRX6 mRNA was detected in giant cells (GCs) at 14 dpi using in situ methods. Virus-induced gene silencing (VIGS) of CsBAS1, CsSND1, and CsIRX6 revealed their distinct roles in nematode-induced gall formation. Silencing CsBAS1 and CsSND1 resulted in increased root growth and gall size, whereas silencing CsIRX6 led to reduced gall size. These findings highlight the functional significance of CsBAS1, CsSND1, and CsIRX6 in cucumber defense against M. incognita, offering insights into the interplay between vascular development and plant defense mechanisms. Full article
Show Figures

Figure 1

16 pages, 5028 KiB  
Article
Arabidopsis thaliana Plants’ Overexpression of the MYB Transcription Factor VhMYB60 in the Face of Stress Hazards Enhances Salt and Cold Tolerance
by Zhe Chen, Jinghan Wang, Wenhui Li, Xiang Chen, Changjia Zhao, Yanbo Guo, Yingnan Li, Zhuo Chen, Xingguo Li and Deguo Han
Int. J. Mol. Sci. 2025, 26(4), 1695; https://doi.org/10.3390/ijms26041695 - 17 Feb 2025
Viewed by 561
Abstract
‘Beta’ (Vitisriparia × V. labrusca) is a vine fruit tree of the genus Vitis which is a cross between American and riparian grapes. In the current situation of grape production in northern regions, cold, drought, and salinity are important bottlenecks restricting [...] Read more.
‘Beta’ (Vitisriparia × V. labrusca) is a vine fruit tree of the genus Vitis which is a cross between American and riparian grapes. In the current situation of grape production in northern regions, cold, drought, and salinity are important bottlenecks restricting its development, while some grape rootstocks with excellent traits show the disadvantage of poor resilience. ‘Beta’ (Vitis riparia × V. labrusca), one of the most extensively utilized rootstocks in viticulture, has demonstrated remarkable resilience to adverse conditions. However, the mechanisms by which ‘Beta’ rootstocks resist abiotic stresses are unknown and need to be further investigated. In this study, we successfully isolated and cloned a novel MYB transcription factor, VhMYB60, from the ‘Beta’ grapevine. This factor spans 972 base pairs and encodes a protein comprising 323 amino acids. Subcellular localization studies revealed that VhMYB60 is predominantly expressed within the nucleus. Furthermore, tissue-specific expression analysis demonstrated that VhMYB60 is more abundantly expressed in the mature leaves and roots of the grape plant. Further studies showed that salt and cold stress notably increased VhMYB60 gene expression in both mature leaves and grape roots. Compared with the control, Arabidopsis thaliana (Arabidopsis) plants molecularly modified to overexpress VhMYB60 exhibited enhanced salt and cold resistance and improved survival rates. Moreover, notable changes were detected in chlorophyll, malondialdehyde (MDA), proline, peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) levels. Concurrently, the expression levels of structural genes that are positively correlated with resistance to adversity stress were markedly elevated in Arabidopsis plants that overexpress VhMYB60. Consequently, VhMYB60 may serve as a pivotal transcription factor in the regulation of ‘Beta’ resistance. Full article
Show Figures

Figure 1

20 pages, 11056 KiB  
Article
Insights into the Role of GhTAT2 Genes in Tyrosine Metabolism and Drought Stress Tolerance in Cotton
by Teame Gereziher Mehari, Jungfeng Tang, Haijing Gu, Hui Fang, Jinlei Han, Jie Zheng, Fang Liu, Kai Wang, Dengbing Yao and Baohua Wang
Int. J. Mol. Sci. 2025, 26(3), 1355; https://doi.org/10.3390/ijms26031355 - 5 Feb 2025
Viewed by 1233
Abstract
Gossypium hirsutum is a key fiber crop that is sensitive to environmental factors, particularly drought stress, which can reduce boll size, increase flower shedding, and impair photosynthesis. The aminotransferase (AT) gene is essential for abiotic stress tolerance. A total of 3 Gossypium species [...] Read more.
Gossypium hirsutum is a key fiber crop that is sensitive to environmental factors, particularly drought stress, which can reduce boll size, increase flower shedding, and impair photosynthesis. The aminotransferase (AT) gene is essential for abiotic stress tolerance. A total of 3 Gossypium species were analyzed via genome-wide analysis, and the results unveiled 103 genes in G. hirsutum, 47 in G. arboreum, and 53 in G. raimondii. Phylogenetic analysis, gene structure examination, motif analysis, subcellular localization prediction, and promoter analysis revealed that the GhAT genes can be classified into five main categories and play key roles in abiotic stress tolerance. Using RNA-seq expression and KEGG enrichment analysis of GhTAT2, a coexpression network was established, followed by RT-qPCR analysis to identify hub genes. The RT-qPCR results revealed that the genes Gh_A13G1261, Gh_D13G1562, Gh_D10G1155, Gh_A10G1320, and Gh_D06G1003 were significantly upregulated in the leaf and root samples following drought stress treatment, with Gh_A13G1261 identified as the hub gene. The GhTAT2 genes were considerably enriched for tyrosine, cysteine, methionine, and phenylalanine metabolism and isoquinoline alkaloid, tyrosine, tryptophan, tropane, piperidine, and pyridine alkaloid biosynthesis. Under drought stress, KEGG enrichment analysis manifested significant upregulation of amino acids such as L-DOPA, L-alanine, L-serine, L-homoserine, L-methionine, and L-cysteine, whereas metabolites such as maleic acid, p-coumaric acid, quinic acid, vanillin, and hyoscyamine were significantly downregulated. Silencing the GhTAT2 gene significantly affected the shoot and root fresh weights of the plants compared with those of the wild-type plants under drought conditions. RT-qPCR analysis revealed that GhTAT2 expression in VIGS-treated seedlings was lower than that in both wild-type and positive control plants, indicating that silencing GhTAT2 increases sensitivity to drought stress. In summary, this thorough analysis of the gene family lays the groundwork for a detailed study of the GhTAT2 gene members, with a specific focus on their roles and contributions to drought stress tolerance. Full article
Show Figures

Figure 1

14 pages, 3121 KiB  
Article
A Maize Calmodulin-like 3 Gene Positively Regulates Drought Tolerance in Maize and Arabidopsis
by Dan Li, Hanqiao Wang, Fushun Luo, Mingrui Li, Zhiqiang Wu, Meiyi Liu, Zhen Wang, Zhenyuan Zang and Liangyu Jiang
Int. J. Mol. Sci. 2025, 26(3), 1329; https://doi.org/10.3390/ijms26031329 - 4 Feb 2025
Viewed by 661
Abstract
Drought stress is one of the important abiotic stresses that affects maize production. As an important Ca2+ sensor, calmodulin-like proteins (CMLs) play key roles in plant growth, development, and stress response, but there are a limited number of studies regarding CMLs in [...] Read more.
Drought stress is one of the important abiotic stresses that affects maize production. As an important Ca2+ sensor, calmodulin-like proteins (CMLs) play key roles in plant growth, development, and stress response, but there are a limited number of studies regarding CMLs in response to drought stress. In this study, a Calmodulin-like gene, namely ZmCML3, was isolated from maize (Zea mays L.). The coding sequence (CDS) of ZmCML3 was 474 bp and a protein of 158 aa which contains three EF-hand motifs. ZmCML3 was localized within the nucleus and plasma membrane. The expression of ZmCML3 was induced by polyethylene glycol (PEG) 6000, NaCl, methyl jasmonate (MeJA), and abscisic acid (ABA). Overexpression of ZmCML3 resulted in enhanced drought tolerance in maize through increasing proline (Pro) content and the activity of peroxide (POD) and superoxide dismutase (SOD). Meanwhile, ZmCML3 also positively regulated the expression of drought stress-responsive genes in maize under drought stress treatment. Taken together, ZmCML3 acts as a positive regulator in maize response to drought stress. These results will provide theoretical basis for breeding drought tolerance maize variety. Full article
Show Figures

Figure 1

24 pages, 9961 KiB  
Article
Genome-Wide Analysis of bZIP Transcription Factors and Expression Patterns in Response to Salt and Drought Stress in Vaccinium corymbosum
by Xinghua Feng, Chuchu Wang, Sijin Jia, Jiaying Wang, Lianxia Zhou, Yan Song, Qingxun Guo and Chunyu Zhang
Int. J. Mol. Sci. 2025, 26(2), 843; https://doi.org/10.3390/ijms26020843 - 20 Jan 2025
Viewed by 915
Abstract
The basic leucine zipper (bZIP) transcription factors play essential roles in multiple stress responses and have been identified and functionally characterized in many plant species. However, the bZIP family members in blueberry are unclear. In this study, we identified 102 VcbZIP genes in [...] Read more.
The basic leucine zipper (bZIP) transcription factors play essential roles in multiple stress responses and have been identified and functionally characterized in many plant species. However, the bZIP family members in blueberry are unclear. In this study, we identified 102 VcbZIP genes in Vaccinium corymbosum. VcbZIPs were divided into 10 groups based on phylogenetic analysis, and each group shared similar motifs, domains, and gene structures. Predictions of cis-regulatory elements in the upstream sequences of VcbZIP genes indicated that VcbZIP proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analyses of RNA deep sequencing data showed that 18, 13, and 7 VcbZIP genes were differentially expressed in response to salt, drought, and ABA stress, respectively, for the blueberry cultivar Northland. Ten VcbZIP genes responded to both salt and drought stress, indicating that salt and drought have unique and overlapping signals. Of these genes, VcbZIP1–3 are responsive to salt, drought, and abscisic acid treatments, and their encoded proteins may integrate salt, drought, and ABA signaling. Furthermore, VcbZIP1–3 from group A and VcbZIP83–84 and VcbZIP75 from group S exhibited high or low expression under salt or drought stress and might be important regulators for improving drought or salt tolerance. Pearson correlation analyses revealed that VcbZIP transcription factors may regulate stress-responsive genes to improve drought or salt tolerance in a functionally redundant manner. Our study provides a useful reference for functional analyses of VcbZIP genes and for improving salt and drought stress tolerance in blueberry. Full article
Show Figures

Figure 1

22 pages, 14013 KiB  
Article
Genome-Wide Characterization of the Heat Shock Transcription Factor Gene Family in Betula platyphylla Reveals Promising Candidates for Heat Tolerance
by Shengzhou Guo, Hao Chen, Hongwei Wu, Zuyuan Xu, Hao Yang, Qinmin Lin, Hanyu Feng, Zilu Zeng, Sanjiao Wang, Haolin Liu, Xiaomin Liu, Shijiang Cao and Kang Wang
Int. J. Mol. Sci. 2025, 26(1), 172; https://doi.org/10.3390/ijms26010172 - 28 Dec 2024
Viewed by 708
Abstract
Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the HSF gene family in Betula platyphylla remains unexplored, despite the availability of its sequenced genome. In [...] Read more.
Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the HSF gene family in Betula platyphylla remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 BpHSF genes within the Betula platyphylla genome, revealing their uneven distribution across chromosomes. These genes were categorized into three subfamilies: A, B, and C. Each was characterized by conserved protein motifs and gene structures, with notable divergence observed between subfamilies. Collinearity analysis suggested that segmental duplication events have driven the evolutionary expansion of the BpHSF gene family. Promoter region analysis identified an array of cis-acting elements linked to growth, development, hormonal regulation, and stress responses. Subcellular localization experiments confirmed the nuclear localization of BpHSFA2a, BpHSFB1a, and BpHSFC1a, consistent with in silico predictions. RNA-seq and RT-qPCR analyses revealed tissue-specific expression patterns of BpHSF genes and their dynamic responses to heat stress, with qPCR validation highlighting a significant upregulation of BpHSFA2a under high-temperature conditions. In summary, this study provided a comprehensive characterization of the HSF gene family in Betula platyphylla, laying a solid foundation for future functional studies. Particularly, BpHSFA2a emerges as a promising candidate gene for enhancing heat tolerance in Betula platyphylla, warranting further detailed investigation. Full article
Show Figures

Figure 1

18 pages, 8001 KiB  
Article
Studies on the Physiological Response of Hemerocallis middendorffii to Two Types of Drought Stresses
by Qi Wang, Xi Lu, Yue Sun, Jiahui Yu, Qingtao Cao, Yiting Xiao, Nan Jiang, Lifei Chen and Yunwei Zhou
Int. J. Mol. Sci. 2024, 25(24), 13733; https://doi.org/10.3390/ijms252413733 - 23 Dec 2024
Cited by 2 | Viewed by 604
Abstract
Drought is a major environmental factor limiting plant growth and development. Hemerocallis middendorffii is a perennial herbaceous plant with high drought resistance, and high ornamental and application values. Understanding the mechanism of drought stress resistance in H. middendorffii is helpful for better utilization [...] Read more.
Drought is a major environmental factor limiting plant growth and development. Hemerocallis middendorffii is a perennial herbaceous plant with high drought resistance, and high ornamental and application values. Understanding the mechanism of drought stress resistance in H. middendorffii is helpful for better utilization of plant resources and selection of excellent germplasms. In this study, the phenological and physiological traits of H. middendorffii were comprehensively analyzed under natural drought stress (ND) and PEG-simulated drought stress (PD), and the resistance of H. middendorffii to different levels of drought stress was evaluated. ND was treated using a natural water loss method. PD was treated under drought stress by using PEG-6000. H. middendorffii were able to grow within 15 d of ND and 4 d of 20% PD. Beyond this drought time, H. middendorffii will wilt and lose their ornamental value. Further study showed that H. middendorffii protect themselves from damage and enhance drought resistance mainly by increasing the content of osmoregulatory substances, enhancing the activity of antioxidant enzymes, and inhibiting photosynthesis. Malondialdehyde (MDA) content accumulated rapidly at 15 d of ND and 7 d of PD. Antioxidant enzyme activities peaked at 15 d of ND and 4 d of PD. Photosynthetic parameters decreased at 15 d of ND and 4 d of 20% PD, respectively. Moreover, we identified that the HmWRKY9 gene was up-regulated for expression in the leaves after ND and PD. HmWRKY9 may be involved in regulating the response of H. middendorffii to drought stress. Full article
Show Figures

Figure 1

23 pages, 6614 KiB  
Article
5-Aminolevulinic Acid (5-ALA)-Induced Drought Resistance in Maize Seedling Root at Physiological and Transcriptomic Levels
by Yaqiong Shi, Zihao Jin, Jingyi Wang, Guangkuo Zhou, Fang Wang and Yunling Peng
Int. J. Mol. Sci. 2024, 25(23), 12963; https://doi.org/10.3390/ijms252312963 - 2 Dec 2024
Cited by 1 | Viewed by 1289
Abstract
Drought stress seriously affects the growth, development, yield, and quality of maize. This study aimed to investigate the effects of exogenous 5-ALA on root morphology and physiological changes in maize seedlings and to detect its regulatory network. The results showed that adding 25 [...] Read more.
Drought stress seriously affects the growth, development, yield, and quality of maize. This study aimed to investigate the effects of exogenous 5-ALA on root morphology and physiological changes in maize seedlings and to detect its regulatory network. The results showed that adding 25 mg/L 5-ALA accelerated root morphogenesis (root average diameter, main root length, total root length, and root surface area) and promoted dry matter accumulation and free radical removal. Transcriptome analysis showed that after applying exogenous 5-ALA, differently expressed genes (DEGs) were mainly involved in histidine metabolism, amino acid biosynthesis, plasma membrane components, secondary active sulfate transmembrane transporter activity, and anion reverse transporter activity. Two inbred lines specifically responded to organelle and structural molecular activity, and 5-ALA may regulate maize roots to achieve drought tolerance through these two pathways. In addition, candidate genes that may regulate maize root growth were screened by weighted gene co-expression network analysis (WGCNA). These genes may play important roles in alleviating drought stress through lignin synthesis, heat shock proteins, iron storage and transport, calcium binding proteins, and plasma membrane regulation of exogenous regulator 5-ALA. Our results may provide a theoretical basis for clarifying the response of maize seedling roots to drought and the mechanism of exogenous hormones in alleviating drought. Full article
Show Figures

Figure 1

Back to TopTop