ijms-logo

Journal Browser

Journal Browser

Bioactive Molecules of Natural Origin: Mechanisms of Action Related to Health Risks and Benefits—3rd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 2229

Special Issue Editor

Special Issue Information

Dear Colleagues,

Bioactive natural compounds (such as alkaloids, phenolics, terpenes, saponins, and volatile organic compounds) are increasingly used for their antioxidant, anti-inflammatory, bactericidal, fungicidal and virucidal properties for the benefit of human health. Moreover, they are found in a growing number of applications, such as cosmetics and wellness; but also in sectors where they were not traditionally used such as food preservation, household products and in the field of plant-protection products in agronomy. The number of publications treating bioactive natural compounds has increased significantly in recent years, but many publications are essentially descriptive.

The aim of this Special Issue is to study, at a molecular level, the mechanisms of action of bioactive natural compounds in their various beneficial properties to human health or to other domains and to carry out a rigorous assessment of the risks (toxicity, allergies, for example). This knowledge will contribute to a more rational and safer use of these compounds in the many sectors where they are employed.

Prof. Dr. Marie-Laure Fauconnier
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural compounds
  • alkaloids
  • phenolics
  • terpenes
  • saponins
  • essential oils
  • volatile organic compounds
  • mechanisms of action
  • health risk
  • antioxidant
  • anti-inflammatory
  • bactericide
  • fungicide
  • virucidal properties
  • cosmetics
  • plant protection products

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

30 pages, 2488 KiB  
Article
Bioactivity of Eugenol: A Potential Antibiotic Adjuvant with Minimal Ecotoxicological Impact
by Natalia Ferrando, María Rosa Pino-Otín, Eva Terrado, Diego Ballestero and Elisa Langa
Int. J. Mol. Sci. 2024, 25(13), 7069; https://doi.org/10.3390/ijms25137069 - 27 Jun 2024
Viewed by 296
Abstract
Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics [...] Read more.
Combining commercial antibiotics with adjuvants to lower their minimum inhibitory concentration (MIC) is vital in combating antimicrobial resistance. Evaluating the ecotoxicity of such compounds is crucial due to environmental and health risks. Here, eugenol was assessed as an adjuvant for 7 commercial antibiotics against 14 pathogenic bacteria in vitro, also examining its acute ecotoxicity on various soil and water organisms (microbiota, Vibrio fischeri, Daphnia magna, Eisenia foetida, and Allium cepa). Using microdilution methods, checkerboard assays, and kinetic studies, the MICs for eugenol were determined together with the nature of its combinations with antibiotics against bacteria, some unexposed to eugenol previously. The lethal dose for the non-target organisms was also determined, as well as the Average Well Color Development and the Community-Level Physiological Profiling for soil and water microbiota. Our findings indicate that eugenol significantly reduces MICs by 75 to 98%, which means that it could be a potent adjuvant. Ecotoxicological assessments showed eugenol to be less harmful to water and soil microbiota compared to studied antibiotics. While Vibrio fischeri and Daphnia magna were susceptible, Allium cepa and Eisenia foetida were minimally affected. Given that only 0.1% of eugenol is excreted by humans without metabolism, its environmental risk when used with antibiotics appears minimal. Full article
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 672 KiB  
Review
Does Resveratrol Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)?
by Kamila Kasprzak-Drozd, Przemysław Niziński, Paulina Kasprzak, Adrianna Kondracka, Tomasz Oniszczuk, Agata Rusinek and Anna Oniszczuk
Int. J. Mol. Sci. 2024, 25(7), 3746; https://doi.org/10.3390/ijms25073746 - 27 Mar 2024
Cited by 1 | Viewed by 1586
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this. Full article
Show Figures

Figure 1

Back to TopTop