ijms-logo

Journal Browser

Journal Browser

Phytochemicals and Nutrients in Cancer Prevention and Treatment: Recent Trends and Advances

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (15 December 2022) | Viewed by 23499

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
Interests: phytochemicals; polyphenols; cancer; antioxidant; pro-oxidant; DNA damage; dietary supplements; signaling pathways; epigenetic; metabolism; immune system
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plants constitute an important source of compounds with beneficial properties, the discovery and study of new phytochemicals being a growing topic in cancer prevention. The implication of nutrients in preventing cancer and the important role of vegetables are widely known. Polyphenols are an important group of phytochemicals widely present in plant tissues. Many of them are consumed in the diet and are considered to have beneficial properties to prevent cancer. In addition, nowadays, there is growing knowledge about the implication of metabolism in cancer development, making it necessary to explore the role of nutrients in its prevention.

The objective of this Special Issue is to contribute to the scientific evidence about the properties against cancer development of new phytochemicals as well as known phytochemicals, many of them consumed in the diet. In addition, this Special Issue aims to offer an updated overview of implication of nutrients in cancer development.

Dr. Estefanía Burgos-Morón
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytochemicals
  • polyphenols
  • cancer
  • antioxidant
  • pro-oxidant
  • DNA damage
  • dietary supplements
  • signaling pathways
  • epigenetic
  • metabolism
  • immune system

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

28 pages, 5531 KiB  
Article
Manipulation of Amino Acid Levels with Artificial Diets Induces a Marked Anticancer Activity in Mice with Renal Cell Carcinoma
by José Manuel Calderón-Montaño, Emilio Guillén-Mancina, Julio José Jiménez-Alonso, Víctor Jiménez-González, Estefanía Burgos-Morón, Alfonso Mate, María Concepción Pérez-Guerrero and Miguel López-Lázaro
Int. J. Mol. Sci. 2022, 23(24), 16132; https://doi.org/10.3390/ijms232416132 - 17 Dec 2022
Cited by 3 | Viewed by 2116
Abstract
Targeted therapies with antiangiogenic drugs (e.g., sunitinib) and immune checkpoint inhibitors (e.g., anti-PD-1 antibodies) are the standard of care for patients with metastatic renal cell carcinoma. Although these treatments improve patient survival, they are rarely curative. We previously hypothesized that advanced cancers might [...] Read more.
Targeted therapies with antiangiogenic drugs (e.g., sunitinib) and immune checkpoint inhibitors (e.g., anti-PD-1 antibodies) are the standard of care for patients with metastatic renal cell carcinoma. Although these treatments improve patient survival, they are rarely curative. We previously hypothesized that advanced cancers might be treated without drugs by using artificial diets in which the levels of specific amino acids (AAs) are manipulated. In this work, after showing that AA manipulation induces selective anticancer activity in renal cell carcinoma cells in vitro, we screened 18 artificial diets for anticancer activity in a challenging animal model of renal cell carcinoma. The model was established by injecting murine renal cell carcinoma (Renca) cells into the peritoneum of immunocompetent BALB/cAnNRj mice. Mice survival was markedly improved when their normal diet was replaced with our artificial diets. Mice fed a diet lacking six AAs (diet T2) lived longer than mice treated with sunitinib or anti-PD-1 immunotherapy; several animals lived very long or were cured. Controlling the levels of several AAs (e.g., cysteine, methionine, and leucine) and lipids was important for the anticancer activity of the diets. Additional studies are needed to further evaluate the therapeutic potential and mechanism of action of this simple and inexpensive anticancer strategy. Full article
Show Figures

Graphical abstract

20 pages, 4115 KiB  
Article
Antiandrogenic Effects of a Polyphenol in Carex kobomugi through Inhibition of Androgen Synthetic Pathway and Downregulation of Androgen Receptor in Prostate Cancer Cell Lines
by Yudai Kudo, Satoshi Endo, Masatoshi Tanio, Tomofumi Saka, Rin Himura, Naohito Abe, Mitsumi Takeda, Eiji Yamaguchi, Yuta Yoshino, Yuki Arai, Hirohito Kashiwagi, Masayoshi Oyama, Akichika Itoh, Masaki Shiota, Naohiro Fujimoto and Akira Ikari
Int. J. Mol. Sci. 2022, 23(22), 14356; https://doi.org/10.3390/ijms232214356 - 18 Nov 2022
Viewed by 1650
Abstract
Prostate cancer (PC) represents the most common cancer disease in men. Since high levels of androgens increase the risk of PC, androgen deprivation therapy is the primary treatment; however this leads to castration-resistant PC (CRPC) with a poor prognosis. The progression to CRPC [...] Read more.
Prostate cancer (PC) represents the most common cancer disease in men. Since high levels of androgens increase the risk of PC, androgen deprivation therapy is the primary treatment; however this leads to castration-resistant PC (CRPC) with a poor prognosis. The progression to CRPC involves ectopic androgen production in the adrenal glands and abnormal activation of androgen signaling due to mutations and/or amplification of the androgen receptor (AR) as well as activation of androgen-independent proliferative pathways. Recent studies have shown that adrenal-derived 11-oxygenated androgens (11-ketotestosterone and 11-ketodihydrotestosterone) with potencies equivalent to those of traditional androgens (testosterone and dihydrotestosterone) are biomarkers of CRPC. Additionally, dehydrogenase/reductase SDR family member 11 (DHRS11) has been reported to be a 17β-hydroxysteroid dehydrogenase that catalyzes the production of the 11-oxygenated and traditional androgens. This study was conducted to evaluate the pathophysiological roles of DHRS11 in PC using three LNCaP, C4-2 and 22Rv1 cell lines. DHRS11 silencing and inhibition resulted in suppression of the androgen-induced expression of AR downstream genes and decreases in the expression of nuclear AR and the proliferation marker Ki67, suggesting that DHRS11 is involved in androgen-dependent PC cell proliferation. We found that 5,7-dihydroxy-8-methyl-2-[2-(4-hydroxyphenyl)ethenyl]-4H-1-benzopyran-4-one (Kobochromone A, KC-A), an ingredient in the flowers of Carex kobomugi, is a novel potent DHRS11 inhibitor (IC50 = 0.35 μM). Additionally, KC-A itself decreased the AR expression in PC cells. Therefore, KC-A suppresses the androgen signaling in PC cells through both DHRS11 inhibition and AR downregulation. Furthermore, KC-A enhanced the anticancer activity of abiraterone, a CRPC drug, suggesting that it may be a potential candidate for the development of drugs for the prevention and treatment of CRPC. Full article
Show Figures

Figure 1

12 pages, 2810 KiB  
Article
The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis
by Kaili Cui, Haili Wu, Jiangming Fan, Lichao Zhang, Hanqing Li, Huiqin Guo, Ruipeng Yang and Zhuoyu Li
Int. J. Mol. Sci. 2022, 23(20), 12106; https://doi.org/10.3390/ijms232012106 - 11 Oct 2022
Cited by 10 | Viewed by 1918
Abstract
Polyphenol-rich foods are gaining popularity due to their potential beneficial effects in the prevention and treatment of cancer. Foxtail millet is one of the important functional foods, riches in a variety of biologically active substance. Our previous study showed that ferulic acid (FA) [...] Read more.
Polyphenol-rich foods are gaining popularity due to their potential beneficial effects in the prevention and treatment of cancer. Foxtail millet is one of the important functional foods, riches in a variety of biologically active substance. Our previous study showed that ferulic acid (FA) and p-coumaric acid (p-CA) are the main anticancer components of foxtail millet bran, and the two have a significant synergistic effect. In the present study, the clinical application potential of FA and p-CA (FA + p-CA) were evaluated in vivo and in vitro. The FA and p-CA target gene enrichment analysis discovered that FA + p-CA were associated with aerobic glycolysis. It was further shown that FA + p-CA remodel aerobic glycolysis by inhibiting the glycolysis-associated lncRNA 495810 and the glycolytic rate-limiting enzyme M2 type pyruvate kinase (PKM2). Moreover, PKM2 expression was positively correlated with lncRNA 495810. More interestingly, the exogenous expression of lncRNA 495810 eliminated the inhibitory effects of FA + p-CA on aerobic glycolysis. Collectively, FA + p-CA obstruct the aerobic glycolysis of colorectal cancer cells via the lncRNA 495810/PKM2 axis, which provides a nutrition intervention and treatment candidate for colorectal cancer. Full article
Show Figures

Figure 1

19 pages, 4182 KiB  
Article
p-Coumaric acid, Kaempferol, Astragalin and Tiliroside Influence the Expression of Glycoforms in AGS Gastric Cancer Cells
by Iwona Radziejewska, Katarzyna Supruniuk, Michał Tomczyk, Wiktoria Izdebska, Małgorzata Borzym-Kluczyk, Anna Bielawska, Krzysztof Bielawski and Anna Galicka
Int. J. Mol. Sci. 2022, 23(15), 8602; https://doi.org/10.3390/ijms23158602 - 2 Aug 2022
Cited by 13 | Viewed by 2131
Abstract
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p [...] Read more.
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development. Full article
Show Figures

Graphical abstract

22 pages, 4594 KiB  
Article
Sanguinarine Inhibition of TNF-α-Induced CCL2, IKBKE/NF-κB/ERK1/2 Signaling Pathway, and Cell Migration in Human Triple-Negative Breast Cancer Cells
by Samia S. Messeha, Najla O. Zarmouh, Lovely Antonie and Karam F. A. Soliman
Int. J. Mol. Sci. 2022, 23(15), 8329; https://doi.org/10.3390/ijms23158329 - 28 Jul 2022
Cited by 10 | Viewed by 2238
Abstract
Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was [...] Read more.
Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was designed to determine the natural alkaloid sanguinarine (SANG) potential for its antiangiogenic and antimetastatic properties in triple-negative breast cancer (TNBC) cells. The cytotoxic effect of SANG was examined in MDA-MB-231 and MDA-MB-468 cell models at a low molecular level. In this study, SANG remarkably inhibited the inflammatory mediator chemokine CCL2 in MDA-MB-231 and MDA-MB-468 cells. Furthermore, qRT-PCR confirmed with Western analysis studies showed that mRNA CCL2 repression was concurrent with reducing its main regulator IKBKE and NF-κB signaling pathway proteins in both TNBC cell lines. The total ERK1/2 protein was inhibited in the more responsive MDA-MB-231 cells. SANG exhibited a higher potential to inhibit cell migration in MDA-MB-231 cells compared to MDA-MB-468 cells. Data obtained in this study suggest a unique antiangiogenic and antimetastatic effect of SANG in the MDA-MB-231 cell model. These effects are related to the compound’s ability to inhibit the angiogenic CCL2 and impact the ERK1/2 pathway. Therefore, SANG use may be recommended as a component of the therapeutic strategy for TNBC. Full article
Show Figures

Graphical abstract

15 pages, 4033 KiB  
Article
Increase in Anticancer Drug-Induced Toxicity by Fisetin in Lung Adenocarcinoma A549 Spheroid Cells Mediated by the Reduction of Claudin-2 Expression
by Hiroaki Eguchi, Riho Kimura, Haruka Matsunaga, Toshiyuki Matsunaga, Yuta Yoshino, Satoshi Endo and Akira Ikari
Int. J. Mol. Sci. 2022, 23(14), 7536; https://doi.org/10.3390/ijms23147536 - 7 Jul 2022
Cited by 3 | Viewed by 1837
Abstract
Claudin-2 (CLDN2), a component of tight junction, is involved in the reduction of anticancer drug-induced toxicity in spheroids of A549 cells derived from human lung adenocarcinoma. Fisetin, a dietary flavonoid, inhibits cancer cell growth, but its effect on chemosensitivity in spheroids is unknown. [...] Read more.
Claudin-2 (CLDN2), a component of tight junction, is involved in the reduction of anticancer drug-induced toxicity in spheroids of A549 cells derived from human lung adenocarcinoma. Fisetin, a dietary flavonoid, inhibits cancer cell growth, but its effect on chemosensitivity in spheroids is unknown. Here, we found that fisetin (20 μM) decreases the protein level of CLDN2 to 22.3%. Therefore, the expression mechanisms were investigated by real-time polymerase chain reaction and Western blotting. Spheroids were formed in round-bottom plates, and anticancer drug-induced toxicity was measured by ATP content. Fisetin decreased the phosphorylated-Akt level, and CLDN2 expression was decreased by a phosphatidylinositol 3-kinase (PI3K) inhibitor, suggesting the inhibition of PI3K/Akt signal is involved in the reduction of CLDN2 expression. Hypoxia level, one of the hallmarks of tumor microenvironment, was reduced by fisetin. Although fisetin did not change hypoxia inducible factor-1α level, it decreased the protein level of nuclear factor erythroid 2-related factor 2, a stress response factor, by 25.4% in the spheroids. The toxicity of doxorubicin (20 μM) was enhanced by fisetin from 62.8% to 40.9%, which was rescued by CLDN2 overexpression (51.7%). These results suggest that fisetin can enhance anticancer drug toxicity in A549 spheroids mediated by the reduction of CLDN2 expression. Full article
Show Figures

Graphical abstract

21 pages, 2911 KiB  
Article
Involvement of the PI3K/AKT Intracellular Signaling Pathway in the AntiCancer Activity of Hydroxytyrosol, a Polyphenol from Olea europaea, in Hematological Cells and Implication of HSP60 Levels in Its Anti-Inflammatory Activity
by Alberto M. Parra-Perez, Amalia Pérez-Jiménez, Isabel Gris-Cárdenas, Gloria C. Bonel-Pérez, Luis M. Carrasco-Díaz, Khalida Mokhtari, Leticia García-Salguero, José A. Lupiáñez and Eva E. Rufino-Palomares
Int. J. Mol. Sci. 2022, 23(13), 7053; https://doi.org/10.3390/ijms23137053 - 24 Jun 2022
Cited by 13 | Viewed by 2714
Abstract
Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The [...] Read more.
Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL−1, 109.8 µg·mL−1 and 45.7 µg·mL−1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas. Full article
Show Figures

Figure 1

13 pages, 1832 KiB  
Article
Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis
by Haili Wu, Jin’e Du, Chenglu Li, Hanqing Li, Huiqin Guo and Zhuoyu Li
Int. J. Mol. Sci. 2022, 23(7), 3544; https://doi.org/10.3390/ijms23073544 - 24 Mar 2022
Cited by 48 | Viewed by 3643
Abstract
Resistance to 5-Fluorouracil (5-Fu) chemotherapy is the main cause of treatment failure in the cure of colon cancer. Therefore, there is an urgent need to explore a safe and effective multidrug resistance reversal agent for colorectal cancer, which would be of great significance [...] Read more.
Resistance to 5-Fluorouracil (5-Fu) chemotherapy is the main cause of treatment failure in the cure of colon cancer. Therefore, there is an urgent need to explore a safe and effective multidrug resistance reversal agent for colorectal cancer, which would be of great significance for improving clinical efficacy. The dietary flavonoid kaempferol plays a key role in the progression of colorectal cancer and 5-Fu resistance. However, the molecular mechanism of kaempferol in reversing 5-Fu resistance in human colorectal cancer cells is still unclear. We found that kaempferol could reverse the drug resistance of HCT8-R cells to 5-Fu, suggesting that kaempferol alone or in combination with 5-Fu has the potential to treat colorectal cancer. It is well known that aerobic glycolysis is related to tumor growth and chemotherapy resistance. Indeed, kaempferol treatment significantly reduced glucose uptake and lactic acid production in drug-resistant colorectal cancer cells. In terms of mechanism, kaempferol promotes the expression of microRNA-326 (miR-326) in colon cancer cells, and miR-326 could inhibit the process of glycolysis by directly targeting pyruvate kinase M2 isoform (PKM2) 3′-UTR (untranslated region) to inhibit the expression of PKM2 or indirectly block the alternative splicing factors of PKM mRNA, and then reverse the resistance of colorectal cancer cells to 5-Fu. Taken together, our data suggest that kaempferol may play an important role in overcoming resistance to 5-Fu therapy by regulating the miR-326-hnRNPA1/A2/PTBP1-PKM2 axis. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

27 pages, 3422 KiB  
Review
Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation
by Shade’ A. Ahmed, Patricia Mendonca, Rashid Elhag and Karam F. A. Soliman
Int. J. Mol. Sci. 2022, 23(24), 16091; https://doi.org/10.3390/ijms232416091 - 17 Dec 2022
Cited by 28 | Viewed by 4013
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is [...] Read more.
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer. Full article
Show Figures

Figure 1

Back to TopTop