ijms-logo

Journal Browser

Journal Browser

Cellular and Molecular Insights into Ocular Changes Associated with Systemic Disorders and Conditions

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: closed (20 December 2024) | Viewed by 5184

Special Issue Editors


E-Mail Website
Guest Editor
Clinical Hospital Dubrava, School of Medicine, University of Zagreb, Zagreb, Croatia
Interests: glaucoma; diabetic retinopathy; dry eye disease; ocular tumors; immunotherapy; molecular genetic; biomarkers; inflammation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, 80-309 Gdańsk, Poland
Interests: medicine biochemistry; genetics and molecular biology; immunology and microbiology; pharmacology; toxicology and pharmaceutics environmental science; neuroscience
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The relationship between ocular alterations and systemic diseases has recently gained significant attention. The eye offers a unique opportunity for the direct, in vivo observation of the neurosensory and microvascular systems. Numerous systemic diseases have ocular manifestations such as diabetes mellitus, neurodegenerative, psychiatric, cardiovascular, endocrinological, haematological, nutritional, respiratory, autoimmune, and systemic inflammatory diseases and malignancies. Additionally, pregnancy, various genetic syndromes, as well as certain medications and medical treatments may potentially induce ocular changes. In some cases, the ocular findings may be the initial manifestation of the systemic disease preceding the appearance of systemic symptoms. Given the significance of ocular changes as potential biomarkers for systemic diseases, it is essential for medical specialists and interdisciplinary researchers to comprehend the interrelationships between ocular findings and systemic diseases and conditions. This understanding is crucial for translating the acquired knowledge into improved diagnostic and therapeutic algorithms, both at the individual and population levels.

This Special Issue encompasses research that provides new insights into cellular and molecular mechanisms, focusing on the latest advancements in understanding ocular pathology and its associations with various systemic conditions. The objective of this Special Issue is to present new advancements and discoveries in this field. Therefore, all manuscripts, including case reports, commentaries, short communications, clinical reports, experimental research and reviews, as well as meta-analyses, reporting associations between eye disease and changes linked to different systemic conditions, are welcome. Data on molecular mechanisms or pathophysiology are essential, and papers that only contain clinical trials/data are not acceptable.

Dr. Snježana Kaštelan
Prof. Dr. Katarzyna Zorena
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ocular pathology
  • systemic disorders
  • biomarkers
  • pathogenetic mechanism
  • cellular and molecular mechanisms
  • diagnostic techniques
  • imaging technologies
  • treatment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 5829 KiB  
Article
Hypomyelinated vps16 Mutant Zebrafish Exhibit Systemic and Neurodevelopmental Pathologies
by Shreya Banerjee, Shivani Bongu, Sydney P. Hughes, Emma K. Gaboury, Chelsea E. Carver, Xixia Luo, Denise A. Bessert and Ryan Thummel
Int. J. Mol. Sci. 2024, 25(13), 7260; https://doi.org/10.3390/ijms25137260 - 1 Jul 2024
Viewed by 982
Abstract
Homotypic Fusion and Protein Sorting (HOPS) and Class C-core Vacuole/Endosome Tethering (CORVET) complexes regulate the correct fusion of endolysosomal bodies. Mutations in core proteins (VPS11, VPS16, VPS18, and VPS33) have been linked with multiple neurological disorders, including mucopolysaccharidosis (MPS), genetic leukoencephalopathy (gLE), and [...] Read more.
Homotypic Fusion and Protein Sorting (HOPS) and Class C-core Vacuole/Endosome Tethering (CORVET) complexes regulate the correct fusion of endolysosomal bodies. Mutations in core proteins (VPS11, VPS16, VPS18, and VPS33) have been linked with multiple neurological disorders, including mucopolysaccharidosis (MPS), genetic leukoencephalopathy (gLE), and dystonia. Mutations in human Vacuolar Protein Sorting 16 (VPS16) have been associated with MPS and dystonia. In this study, we generated and characterized a zebrafish vps16(-/-) mutant line using immunohistochemical and behavioral approaches. The loss of Vps16 function caused multiple systemic defects, hypomyelination, and increased neuronal cell death. Behavioral analysis showed a progressive loss of visuomotor response and reduced motor response and habituation to acoustic/tap stimuli in mutants. Finally, using a novel multiple-round acoustic/tap stimuli test, mutants showed intermediate memory deficits. Together, these data demonstrate that zebrafish vps16(-/-) mutants show systemic defects, neurological and motor system pathologies, and cognitive impairment. This is the first study to report behavior abnormalities and memory deficiencies in a zebrafish vps16(-/-) mutant line. Finally, we conclude that the deficits observed in vps16(-/-) zebrafish mutants do not mimic pathologies associated with dystonia, but more align to abnormalities associated with MPS and gLE. Full article
Show Figures

Figure 1

22 pages, 3709 KiB  
Article
Thermosensitive TRP Channels Are Functionally Expressed and Influence the Lipogenesis in Human Meibomian Gland Cells
by Melina Keller, Stefan Mergler, Aruna Li, Ingrid Zahn, Friedrich Paulsen and Fabian Garreis
Int. J. Mol. Sci. 2024, 25(7), 4043; https://doi.org/10.3390/ijms25074043 - 5 Apr 2024
Cited by 3 | Viewed by 1838
Abstract
While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis [...] Read more.
While the involvement of thermosensitive transient receptor potential channels (TRPs) in dry eye disease (DED) has been known for years, their expression in the meibomian gland (MG) has never been investigated. This study aims to show their expression and involvement in the lipogenesis of the MG, providing a possible new drug target in the treatment of DED. Our RT-PCR, Western blot and immunofluorescence analysis showed the expression of TRPV1, TRPV3, TRPV4 and TRPM8 in the MG at the gene and the protein level. RT-PCR also showed gene expression of TRPV2 but not TRPA1. Calcium imaging and planar patch-clamping performed on an immortalized human meibomian gland epithelial cell line (hMGECs) demonstrated increasing whole-cell currents after the application of capsaicin (TRPV1) or icilin (TRPM8). Decreasing whole-cell currents could be registered after the application of AMG9810 (TRPV1) or AMTB (TRPM8). Oil red O staining on hMGECs showed an increase in lipid expression after TRPV1 activation and a decrease after TRPM8 activation. We conclude that thermo-TRPs are expressed at the gene and the protein level in MGs. Moreover, TRPV1 and TRPM8’s functional expression and their contribution to their lipid expression could be demonstrated. Therefore, TRPs are potential drug targets and their clinical relevance in the therapy of meibomian gland dysfunction requires further investigation. Full article
Show Figures

Figure 1

19 pages, 5015 KiB  
Article
Cholesterol Content Regulates the Interaction of αA-, αB-, and α-Crystallin with the Model of Human Lens-Lipid Membranes
by Raju Timsina, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Navdeep Kalkat and Laxman Mainali
Int. J. Mol. Sci. 2024, 25(3), 1923; https://doi.org/10.3390/ijms25031923 - 5 Feb 2024
Cited by 3 | Viewed by 1284
Abstract
α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract [...] Read more.
α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. The maximum percentage of membrane surface occupied (MMSO) by αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trends: MMSO (αAc) > MMSO (αBc) ≈ MMSO (αABc), indicating that a higher amount of αAc binds to these membranes compared to αBc and αABc. However, with an increase in the Chol concentration in the Chol/MHLL membranes, the MMSO by αAc, αBc, and αABc decreases until it is completely diminished at a mixing ratio of 1.5. The Ka of αAc, αBc, and αABc to Chol/MHLL membranes at a mixing ratio of 0 followed the trend: Ka (αBc) ≈ Ka (αABc) > Ka (αAc), but it was close to zero with the diminished binding at a Chol/MHLL mixing ratio of 1.5. The mobility near the membrane headgroup regions decreased with αAc, αBc, and αABc binding, and the Chol antagonized the capacity of the αAc, αBc, and αABc to decrease mobility near the headgroup regions. No significant change in membrane order near the headgroup regions was observed, with an increase in αAc, αBc, and αABc concentrations. Our results show that αAc, αBc, and αABc bind differently with Chol/MHLL membranes at mixing ratios of 0 and 0.5, decreasing the mobility and increasing hydrophobicity near the membrane headgroup region, likely forming the hydrophobic barrier for the passage of polar and ionic molecules, including antioxidants (glutathione), creating an oxidative environment inside the lens, leading to the development of cataracts. However, all binding was completely diminished at a mixing ratio of 1.5, indicating that high Chol and CBDs inhibit the binding of αAc, αBc, and αABc to membranes, preventing the formation of hydrophobic barriers and likely protecting against cataract formation. Full article
Show Figures

Figure 1

Back to TopTop