Advances in Bone Substitute Biomaterials

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Bone Biomaterials".

Deadline for manuscript submissions: 20 August 2024 | Viewed by 2113

Special Issue Editors


E-Mail Website
Guest Editor
G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
Interests: bone tissue engineering; bone regeneration; bioceramics; calcium phosphates; scaffolds for drug delivery; hydrogels; 3D printing; biomechanics

E-Mail Website
Guest Editor
G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
Interests: knee endoprosthetics; knee surgery; osteotomy of the knee joint; sports traumatology; arthroscopic surgery; bone replacement materials-beta TCP

Special Issue Information

Dear Colleagues,

A major challenge in orthopaedics today is the development of suitable osteobiological materials that can replace conventional allografts, autografts and xenografts and thus serve as implant materials for bone repair, bone remodelling or bone replacement. This is particularly due to the fact that our society is getting older and older and age-related diseases such as osteoarthritis and bone defects are increasing. Over the past ten years, significant progress has been made in the field of bone replacement materials and their production through additive manufacturing. These developments focus on the improved use of osteoinduction, osteoconduction and stem cells in the context of bone tissue engineering. Despite these advances, the use of autologous bone grafts remains the gold standard in daily clinical practice. This Special Issue will include current insights into the biology of bone graft substitutes and advances in manufacturing technology, including personalized approaches. Various aspects will be highlighted, including new materials, their interactions with biological systems, production methods such as additive manufacturing/3D printing, osteoconduction, surface modifications, and osteoinduction.

We hereby invite you to submit a manuscript for this Special Issue. Full articles, communications and reviews are welcome.

Dr. Michael Seidenstuecker
Prof. Dr. Hermann Mayr
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • new biomaterials
  • interaction biomaterials with biological systems
  • new production methods
  • additive manufacturing/3D printing
  • surface modifications
  • osteoinduction

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 978 KiB  
Article
Effects of Erythropoietin-Promoted Fracture Healing on Bone Turnover Markers in Cats
by Radina Vasileva, Tsvetan Chaprazov and Aneliya Milanova
J. Funct. Biomater. 2024, 15(4), 106; https://doi.org/10.3390/jfb15040106 - 17 Apr 2024
Viewed by 515
Abstract
In orthopaedics, erythropoietin (EPO) is applied in the preoperative management of anaemic patients, but also as a stimulating factor to assist bone regeneration due to its angiogenic and osteoinductive potential. Since orthopaedists mainly rely on their clinical experience to assess bone healing, additional [...] Read more.
In orthopaedics, erythropoietin (EPO) is applied in the preoperative management of anaemic patients, but also as a stimulating factor to assist bone regeneration due to its angiogenic and osteoinductive potential. Since orthopaedists mainly rely on their clinical experience to assess bone healing, additional and more objective methods such as studying the dynamics of bone markers are needed. Therefore, the aim of this study was to investigate the plasma activity of bone-specific alkaline phosphatase (BALP), the N-terminal propeptide of type I collagen (PINP), the C-terminal telopeptide of type I collagen (CTX), and deoxypyridinoline (DPD) during the first 2 months of healing of comminuted fractures in cats, either non-stimulated or locally stimulated with recombinant human erythropoietin (rhEPO). The study included twelve cats of mixed breeds, aged 7.2 ± 4 months, weighing 2.11 ± 1.1 kg, with comminuted diaphyseal fractures of the femur. Surgical treatment with plate osteosynthesis was performed in all animals. The cats were randomly divided into two groups—a control (n = 6) and an EPO group (n = 6). The locally applied EPO leads to the increased activity of bone formation markers (BALP and PINP) during the second week after the osteosynthesis, preceding the peaks in the control group by two weeks. The studied bone resorption markers (DPD, CTX) varied insignificantly during the studied period. In conclusion, erythropoietin could serve as a promoter of bone healing in comminuted fractures in cats. Full article
(This article belongs to the Special Issue Advances in Bone Substitute Biomaterials)
Show Figures

Figure 1

12 pages, 3455 KiB  
Article
Mechanical Properties and Corrosion Rate of ZnAg3 as a Novel Bioabsorbable Material for Osteosynthesis
by Maria Roesner, Sergej Zankovic, Adalbert Kovacs, Moritz Benner, Roland Barkhoff and Michael Seidenstuecker
J. Funct. Biomater. 2024, 15(2), 28; https://doi.org/10.3390/jfb15020028 - 25 Jan 2024
Viewed by 1413
Abstract
Osteosynthesis in fracture treatment typically uses hardware that remains in the patient’s body, which brings a permanent risk of negative side effects such as foreign body reactions or chronic inflammation. Bioabsorbable materials, however, can degrade and slowly be replaced by autologous bone tissue. [...] Read more.
Osteosynthesis in fracture treatment typically uses hardware that remains in the patient’s body, which brings a permanent risk of negative side effects such as foreign body reactions or chronic inflammation. Bioabsorbable materials, however, can degrade and slowly be replaced by autologous bone tissue. A suitable material is requested to offer great biocompatibility alongside excellent mechanical properties and a reasonable corrosion rate. Zinc–silver alloys provide these characteristics, which makes them a promising candidate for research. This study investigated the aptitude as a bioabsorbable implant of a novel zinc–silver alloy containing 3.3 wt% silver (ZnAg3). Here, the tensile strength as well as the corrosion rate in PBS solution (phosphate buffered solution) of ZnAg3 were assessed. Furthermore, shear tests, including fatigue and quasi-static testing, were conducted with ZnAg3 and magnesium pins (MAGNEZIX®, Syntellix AG, Hannover, Germany), which are already in clinical use. The detected corrosion rate of 0.10 mm/year for ZnAg3 was within the proposed range for bioabsorbable implants. With a tensile strength of 237.5 ± 2.12 MPa and a shear strength of 144.8 ± 13.2 N, ZnAg3 satisfied the mechanical requirements for bioabsorbable implants. The fatigue testing did not show any significant difference between ZnAg3 and magnesium pins, whereas both materials withstood the cyclic loading. Thus, the results support the assumption that ZnAg3 is qualified for further investigation. Full article
(This article belongs to the Special Issue Advances in Bone Substitute Biomaterials)
Show Figures

Figure 1

Back to TopTop