Sustainable Valorization of Seafood By-Products through Recovery of Valuable Bioactive Compounds 2nd Edition

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Biotechnology Related to Drug Discovery or Production".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 1346

Special Issue Editors


E-Mail Website
Guest Editor
CSIC—Instituto de Ciencia y Tecnologia de Alimentos y Nutricion (ICTAN), Institute of Food Science, Technology and Nutrition (ICTAN, CSIC), Madrid, Spain
Interests: seafood by-products; bioactive molecules; in vivo assays; enzymes; protein hydrolysates; upgrading; bioactive ingredients
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia
Interests: seafood processing and utilization of processing by-products; marine peptides and protein hydrolysates; marine glycosaminoglycans; nutraceuticals and functional foods
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Based on the success of the Special Issue ”Sustainable Valorization of Seafood By-Products through Recovery of Valuable Bioactive Compounds” (https://www.mdpi.com/journal/marinedrugs/special_issues/JHU7MRG39S),
we are pleased to announce the second edition of this Special Issue.

Seafood processing, mainly on factory vessels, generates a large number of by-products, such as heads, bones and guts, which represent between 30% and 70% of the whole weight. These by-products, although hardly used, are a good source of macro and micronutrients, as well as of molecules with bioactive potential such as polyunsaturated fatty acids, peptides, or chitosan. An improved waste processing strategy is, however, necessary to extract these compounds, especially in the framework of a circular economy.

In this context, we invite authors to contribute to this Special Issue with articles on the extraction of bioactive molecules from seafood processing by-products, with cosmetic (e.g., wound repairers), pharmaceutical, or nutraceutical interest (antihypertensives, hypoglycaemics, nootropics, anti-aging, anti-tumour, etc.). Articles describing the optimisation of the extraction process of these molecules, mainly using green technologies, and their bioactive effect in vitro and/or in vivo, as well as processes that favour their production (e.g., fermentation), are also welcome.

Dr. Oscar Martinez-Alvarez
Prof. Dr. Ali Bougatef
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seafood upgrading
  • bioactive molecules
  • nutraceuticals
  • cosmeceuticals
  • high-throughput screenings
  • protein hydrolysates
  • marine ingredients
  • functional food

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 4405 KiB  
Article
Chemical Characterization of Bioactive Compounds in Extracts and Fractions from Litopenaeus vannamei Muscle
by Sandra Carolina De La Reé-Rodríguez, María Jesús González, Ingrid Fernández, José Luis Garrido, Erika Silva-Campa, Norma Violeta Parra-Vergara, Carmen María López-Saiz and Isabel Medina
Mar. Drugs 2025, 23(2), 59; https://doi.org/10.3390/md23020059 - 27 Jan 2025
Abstract
Marine organisms are a vital source of biologically active compounds. Organic extracts from the muscle of the Pacific white shrimp (L. vannamei) have shown antiproliferative effects on tumor cells, including breast adenocarcinoma. This study aimed to analyze these extracts’ composition and [...] Read more.
Marine organisms are a vital source of biologically active compounds. Organic extracts from the muscle of the Pacific white shrimp (L. vannamei) have shown antiproliferative effects on tumor cells, including breast adenocarcinoma. This study aimed to analyze these extracts’ composition and confirm their specificity for breast adenocarcinoma cells without harming normal cells. An organic chloroform extract from L. vannamei muscle was divided using a solvent partition procedure with methanol and hexane. The methanolic partition was fractionated through an open preparative liquid chromatography column to isolate compounds with biological activity, that were later tested on MDA-MB-231 (breast adenocarcinoma), and recently tested on MCF10-A (non-cancerous breast epithelial cells). Cells incubated with these fractions were assessed for viability and morphological changes using fluorescence confocal microscopy. Fractions F#13 and F#14 reduced MDA-MB-231 cancer cell viability at 100 µg/mL without affecting non-cancerous MCF-10A cells, inducing apoptosis-related changes in cancer cells. These fractions contained EPA and DHA free fatty acids, specifically F#13 contained free and esterified astaxanthin as well. The high levels of free linoleic acid 18:2 ω-6, EPA, and DHA (in a 2:1 ratio, EPA:DHA), along with free and esterified astaxanthin in F#13, significantly reduced breast adenocarcinoma cell viability, nearly to that achieved by cisplatin, a chemotherapy drug. Full article
Show Figures

Figure 1

Review

Jump to: Research

41 pages, 1468 KiB  
Review
Omega-3 Fatty Acids for the Treatment of Bipolar Disorder Symptoms: A Narrative Review of the Current Clinical Evidence
by Evmorfia Psara, Sousana K. Papadopoulou, Maria Mentzelou, Gavriela Voulgaridou, Theophanis Vorvolakos, Thomas Apostolou and Constantinos Giaginis
Mar. Drugs 2025, 23(2), 84; https://doi.org/10.3390/md23020084 - 15 Feb 2025
Abstract
Background: Bipolar disorder is a chronic mental disease that is characterized by depressive and manic episodes. Antipsychotics and mood stabilizers are known therapies that work, but their restrictions and disadvantages resulted in the need for complementary and alternative therapies, such as natural compounds. [...] Read more.
Background: Bipolar disorder is a chronic mental disease that is characterized by depressive and manic episodes. Antipsychotics and mood stabilizers are known therapies that work, but their restrictions and disadvantages resulted in the need for complementary and alternative therapies, such as natural compounds. Omega-3 fatty acids, as basic ingredients of fishes and seafood, play crucial roles in brain development, function of brain membrane enzymes, learning, and many other instances, and their deficiency has been associated with many mental diseases, including bipolar disorder. Methods: The present narrative review aims to critically summarize and scrutinize the available clinical studies on the use of omega-3 fatty acids in the management and co-treatment of bipolar disorder episodes and symptoms. For this purpose, a thorough and in-depth search was performed in the most accurate scientific databases, e.g., PubMed., Scopus, Web of Science, Cochrane, Embase, and Google Scholar, applying effective and relevant keywords. Results: There are currently several clinical studies that assessed the effect of omega-3 fatty acids on the severity of BD symptoms. Some of them supported evidence for the potential beneficial impact of omega-3 fatty acids supplementation in the prevention and/or co-treatment of bipolar disorder severity and symptomatology. Nevertheless, a considerable number of clinical studies did not show high efficiency, rendering the existing data rather conflicting. The above may be ascribed to the fact that there is a high heterogeneity amongst the available clinical studies concerning the dosage, the administration duration, the combination of fatty acids administration, the method designs and protocols, and the study populations. Conclusion: Although the currently available clinical evidence seems promising, it is highly recommended to accomplish larger, long-term, randomized, double-blind, controlled clinical trials with a prospective design in order to derive conclusive results as to whether omega-fatty acids could act as a co-treatment agent or even as protective factors against bipolar disorder symptomatology. Drug design strategies could be developed to derive novel synthetic omega-3 fatty acids analogs, which could be tested for their potential to attenuate the severity of BD episodes and symptoms. Full article
Show Figures

Figure 1

Back to TopTop