materials-logo

Journal Browser

Journal Browser

Applications of Silica and Silica-Based Composites

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: closed (20 August 2024) | Viewed by 4334

Special Issue Editors


E-Mail Website
Guest Editor
“Coriolan Dragulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania
Interests: functionalized silica materials; iron oxide silica nanocomposites; adsorption; drug loading; ionic liquids
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Physic, Universit della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
Interests: hydrogen; methane; CCS; porous materials; nanostructure; energy conversion and storage; 2D materials; self-assembled monolayer
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is intended to present studies on the preparation and characterization of controlled functionalized porous materials with tailored properties that can be used in different applications. The functionalization of porous silica materials has been used to tune their physical and chemical properties for different applications, such as drug carriers, gas storage materials, water pollutants adsorbents, or asphalt modifiers. The present Special Issue aims to gather some of the current challenging research explorations in the use of different functional groups, the presence of organic groups within the pores or the amount of a certain functional group which will be attached at the material surface by one or another functionalization procedure, and how all these separate or combined effects will merge together to promote the resulting material for a certain application. The topics of interest include, but are not limited to: the preparation of functionalized porous materials via co-condensation or post-grafting methods; the structural and morphological characterization of these materials with tailored properties; functionalized silica materials for hydrogen, methane, or carbon dioxide storage; functionalized porous silica materials as drug carriers; functionalized mesoporous silica materials used for the removal of dyes, heavy metals, or other pollutants from waste water; and functionalized silica materials used as an asphalt modifier.

Dr. Ana-Maria Putz
Dr. Alfonso Policicchio
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functionalized silica materials
  • co-condensation
  • post-grafting
  • drug loading
  • gas adsorption
  • pollutant removal

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3415 KiB  
Article
Dual Fractions Proteomic Analysis of Silica Nanoparticle Interactions with Protein Extracts
by Marion Schvartz, Florent Saudrais, Yves Boulard, Jean-Philippe Renault, Céline Henry, Stéphane Chédin, Serge Pin and Jean-Christophe Aude
Materials 2024, 17(19), 4909; https://doi.org/10.3390/ma17194909 - 7 Oct 2024
Viewed by 924
Abstract
Dual-fraction proteomics reveals a novel class of proteins impacted by nanoparticle exposure. Background: Nanoparticles (NPs) interact with cellular proteomes, altering biological processes. Understanding these interactions requires comprehensive analyses beyond solely characterizing the NP corona. Methods: We utilized a dual-fraction mass spectrometry (MS) approach [...] Read more.
Dual-fraction proteomics reveals a novel class of proteins impacted by nanoparticle exposure. Background: Nanoparticles (NPs) interact with cellular proteomes, altering biological processes. Understanding these interactions requires comprehensive analyses beyond solely characterizing the NP corona. Methods: We utilized a dual-fraction mass spectrometry (MS) approach to analyze both NP-bound and unbound proteins in Saccharomyces cerevisiae sp. protein extracts exposed to silica nanoparticles (SiNPs). We identified unique protein signatures for each fraction and quantified protein abundance changes using spectral counts. Results: Strong correlations were observed between protein profiles in each fraction and non-exposed controls, while minimal correlation existed between the fractions themselves. Linear models demonstrated equal contributions from both fractions in predicting control sample abundance. Combining both fractions revealed a larger proteomic response to SiNP exposure compared to single-fraction analysis. We identified 302/56 proteins bound/unbound to SiNPs and an additional 196 “impacted” proteins demonstrably affected by SiNPs. Conclusion: This dual-fraction MS approach provides a more comprehensive understanding of nanoparticle interactions with cellular proteomes. It reveals a novel class of “impacted” proteins, potentially undergoing conformational changes or aggregation due to NP exposure. Further research is needed to elucidate their biological functions and the mechanisms underlying their impact. Full article
(This article belongs to the Special Issue Applications of Silica and Silica-Based Composites)
Show Figures

Figure 1

20 pages, 7757 KiB  
Article
Synthesis and Characterization of Porous Hydrophobic and Hydrophilic Silica Microcapsules for Applications in Agriculture
by Yeela Elbaz, Taly Iline-Vul, Aviv Dombrovsky, Ayelet Caspi and Shlomo Margel
Materials 2024, 17(18), 4621; https://doi.org/10.3390/ma17184621 - 20 Sep 2024
Viewed by 785
Abstract
Silica (SiO2) particles are widely used in various industries due to their chemical inertness, thermal stability, and wear resistance. The present study describes the preparation and potential use of porous hydrophobic and hydrophilic SiO2 microcapsules (MCs) of a narrow size [...] Read more.
Silica (SiO2) particles are widely used in various industries due to their chemical inertness, thermal stability, and wear resistance. The present study describes the preparation and potential use of porous hydrophobic and hydrophilic SiO2 microcapsules (MCs) of a narrow size distribution. First, various layers of SiO2 micro/nano-particles (M/NPs) were grafted onto monodispersed polystyrene (PS) microspheres of a narrow size distribution. Hydrophobic and hydrophilic sintered SiO2 MCs were then prepared by removing the core PS from the PS/SiO2 core–shell microspheres by burning off under normal atmospheric conditions or organic solvent dissolution, respectively. We examined how the size and quantity of the SiO2 M/NPs influence the MC’s properties. Additionally, we utilized two forms of hollow SiO2 MC for different applications; one form was incorporated into polymer films, and the other was free-floating. The hydrophobic microcapsules filled with 6% hydrogen peroxide were effective in killing the tomato brown rugose fruit virus (ToBRFV). The hydrophilic microcapsules filled with thymol and thin coated onto polypropylene films were successfully used to prevent mold formation for hay protection. Full article
(This article belongs to the Special Issue Applications of Silica and Silica-Based Composites)
Show Figures

Figure 1

14 pages, 3968 KiB  
Article
SBA-15 Type Mesoporous Silica Modified with Vanadium as a Catalyst for Oxidative and Extractive Oxidative Desulfurization Processes
by Ardian Nurwita, Katarzyna Stawicka and Maciej Trejda
Materials 2024, 17(16), 4041; https://doi.org/10.3390/ma17164041 - 14 Aug 2024
Viewed by 716
Abstract
One of the current challenges is the reduction of sulfur emitted into the atmosphere, usually in the form of sulfur oxides generated by fossil fuel combustion. To achieve this goal, the sulfur content should be reduced in fuel. In this context, vanadium-containing materials [...] Read more.
One of the current challenges is the reduction of sulfur emitted into the atmosphere, usually in the form of sulfur oxides generated by fossil fuel combustion. To achieve this goal, the sulfur content should be reduced in fuel. In this context, vanadium-containing materials based on SBA-15 mesoporous silica supports and two different sources of vanadium were prepared, characterized, and applied as catalysts for oxidative desulfurization (CODS) and extractive oxidative desulfurization processes (ECODSs). The novelty of this work was the comparative study of vanadium-containing materials in two desulfurization systems. The properties of the catalysts, the concentration and state of vanadium species, and their role in the catalytic process were examined by low-temperature nitrogen physisorption, XRD, UV-Vis, XPS, and chemisorption of pyridine combined with FTIR spectroscopy. The catalytic performance of the material prepared using ammonium metavanadate was superior to that of the catalyst obtained using vanadium(IV) oxide sulfate, which was explained by a higher concentration of vanadium species on the surface of the support and their lower oxidation state in the former. Both types of catalysts showed high activity and stability in the ECODS process. Full article
(This article belongs to the Special Issue Applications of Silica and Silica-Based Composites)
Show Figures

Figure 1

15 pages, 5964 KiB  
Article
Mesoporous Silica MCM-41 from Fly Ash as a Support of Bimetallic Cu/Mn Catalysts for Toluene Combustion
by Jakub Mokrzycki, Monika Fedyna, Dorota Duraczyńska, Mateusz Marzec, Rafał Panek, Wojciech Franus, Tomasz Bajda and Robert Karcz
Materials 2024, 17(3), 653; https://doi.org/10.3390/ma17030653 - 29 Jan 2024
Viewed by 1288
Abstract
The main outcome of this research was to demonstrate the opportunity to obtain a stable and well-ordered structure of MCM-41 synthesized from fly ash. A series of bimetallic (Cu/Mn) catalysts supported at MCM-41 were prepared via grinding method and investigated in catalytic toluene [...] Read more.
The main outcome of this research was to demonstrate the opportunity to obtain a stable and well-ordered structure of MCM-41 synthesized from fly ash. A series of bimetallic (Cu/Mn) catalysts supported at MCM-41 were prepared via grinding method and investigated in catalytic toluene combustion reaction to show the material’s potential application. It was proved, that the Cu/Mn ratio had a crucial effect on the catalytic activity of prepared materials. The best catalytic performance was achieved with sample Cu/Mn(2.5/2.5), for which the temperature of 50% toluene conversion was found to be 300 °C. This value remains in line with the literature reports, for which comparable catalytic activity was attained for 3-fold higher metal loadings. Time-on-stream experiment proved the thermal stability of the investigated catalyst Cu/Mn(2.5/2.5). The obtained results bring a valuable background in the field of fly ash utilization, where fly ash-derived MCM-41 can be considered as efficient and stable support for dispersion of active phase for catalyst preparation. Full article
(This article belongs to the Special Issue Applications of Silica and Silica-Based Composites)
Show Figures

Figure 1

Back to TopTop