materials-logo

Journal Browser

Journal Browser

Advances in Ferroelectric and Piezoelectric Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Electronic Materials".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 487

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
Interests: lead-free piezoelectric ceramics; single crystal growth; textured ceramics; relaxor ferroelectric materials; electrostrictive materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Piezoelectric and ferroelectric materials appear in many of our everyday electronic devices, as well as finding many industrial and medical applications. Piezoelectric and ferroelectric materials have traditionally found numerous applications such as actuators, ultrasonic motors, transducers, sensors and capacitors. New applications such as ferroelectric random-access memory, neuromorphic computing, high-temperature capacitors, energy harvesting, energy storage materials, biomaterials and photocatalysts are constantly being developed, as well as new categories of materials such as high-entropy ferroelectric and anti-ferroelectric relaxor materials.

In this Special Issue, we welcome the latest research contributions on piezoelectric and ferroelectric materials, with suitable topics including novel compositions (e.g. high-entropy compositions, morphotropic phase boundaries, dopant addition), domain control (e.g. domain engineering, incipient ferroelectric materials, antiferroelectric materials, electrostrictive materials), microstructure control (e.g. single crystals, polycrystalline ceramics, nanoceramics, textured ceramics, thin/thick films), processing (e.g. sintering, multilayer processing, nanomaterials, 2D materials) and applications (e.g. catalysts, energy storage capacitors, computing, micro-/nano-positioning).

Prof. Dr. John G. Fisher
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • piezoelectric
  • ferroelectric
  • microstructure
  • domain engineering
  • sintering
  • multilayer
  • energy storage

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 7521 KiB  
Article
The Design and Fabrication of Shear-Mode Piezoelectric Accelerometers with High Bandwidth Using High Piezoelectric g-Coefficient NKN-Based Ceramics
by Jian-Hao Huang, Chien-Min Cheng, Sheng-Yuan Chu and Cheng-Che Tsai
Materials 2025, 18(8), 1813; https://doi.org/10.3390/ma18081813 - 15 Apr 2025
Viewed by 128
Abstract
In this work, lead-free (Na0.475K0.475Li0.05)NbO3 + x wt.% ZnO (NKLN, x = 0 to 0.3) piezoelectric ceramics with high piezoelectric g-coefficients were prepared by conventional solid-state synthesis method. By adding different concentrations of ZnO dopants, we [...] Read more.
In this work, lead-free (Na0.475K0.475Li0.05)NbO3 + x wt.% ZnO (NKLN, x = 0 to 0.3) piezoelectric ceramics with high piezoelectric g-coefficients were prepared by conventional solid-state synthesis method. By adding different concentrations of ZnO dopants, we aimed to improve the material properties and enhance their piezoelectric properties. The effects of the ZnO addition on the microstructure, dielectric, piezoelectric and ferroelectric properties of the proposed samples are investigated. Adding ZnO reduced the dielectric constant and improved the g-value of the samples. The properties of the samples without ZnO doping were g33 = 31 mV·m/N, g15 = 34 mV·m/N, kp = 0.39, Qm = 92, εr = 458, d33 = 127 pC/N and dielectric loss = 3.4%. With the preferable ZnO doping of 1 wt.%, the piezoelectric properties improved to g33 = 40 mV·m/N, g15 = 44 mV·m/N, kp = 0.44, Qm = 89, εr = 406, d33 = 139 pC/N and dielectric loss = 2.4%. Finally, ring-shaped shear mode piezoelectric accelerometers were fabricated using the optimum ZnO-doped samples. The simulated resonant frequency using ANSYS 2024 R1 software was approximately 23 kHz, while the actual measured resonant frequency of the devices was 19 kHz. The sensitivity was approximately 7.08 mV/g. This piezoelectric accelerometer suits applications requiring lower sensitivity and higher resonant frequencies, such as monitoring high-frequency vibrations in high-speed machinery, robotic arms or scientific research and engineering fields involving high-frequency vibration testing. Full article
(This article belongs to the Special Issue Advances in Ferroelectric and Piezoelectric Materials)
Show Figures

Figure 1

15 pages, 4522 KiB  
Article
Dielectric Properties of Composite PZT Films with Distinct Phase-Transition Temperatures via Aerosol Deposition
by Ye-Ji Son, Seung-Wook Kim, Hyo-Min Kim, Hyojung Kim, Baojin Chu and Dae-Yong Jeong
Materials 2025, 18(7), 1427; https://doi.org/10.3390/ma18071427 - 24 Mar 2025
Viewed by 251
Abstract
With the increasing demand for ceramic-based capacitors in energy storage and electronics, ferroelectrics have gained attention due to their high dielectric coefficient. However, near the phase-transition temperature, a significant variation in dielectric coefficient leads to reduced temperature stability and degradation of electrical properties, [...] Read more.
With the increasing demand for ceramic-based capacitors in energy storage and electronics, ferroelectrics have gained attention due to their high dielectric coefficient. However, near the phase-transition temperature, a significant variation in dielectric coefficient leads to reduced temperature stability and degradation of electrical properties, limiting their applications. To address this, composite films with multiple phase-transition temperatures can provide a stable dielectric response over a broad temperature range. Conventional ceramic processing cannot achieve this due to interdiffusion during high-temperature sintering. To overcome this, we utilized the aerosol deposition (AD) process, which enables the fabrication of high-density ceramic films at room temperature while preserving the distinct Curie temperatures (Tc) of different compositions. We prepared composite films with three PZT compositions: Pb(Zr0.2Ti0.8)O3, Pb(Zr0.52Ti0.48)O3, and Pb(Zr0.8Ti0.2)O3. Compared to single-phase Pb(Zr0.52Ti0.48)O3, the composite film exhibited a higher dielectric coefficient with reduced variation across a broad temperature range due to overlapping phase transitions. The AD-fabricated composite PZT films offer enhanced thermal stability, making them suitable for temperature-sensitive applications such as compact power electronics and portable devices. Full article
(This article belongs to the Special Issue Advances in Ferroelectric and Piezoelectric Materials)
Show Figures

Figure 1

Back to TopTop