materials-logo

Journal Browser

Journal Browser

Advances in the Sustainable Fabrication of Smart and Functional Textiles

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Smart Materials".

Deadline for manuscript submissions: closed (20 August 2024) | Viewed by 2471

Special Issue Editors


E-Mail Website
Guest Editor
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
Interests: polymers; fibres; modification; functionality; coloration; sustainable manufacturing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Textile and Clothing Engineering, Soochow University, Suzhou, China
Interests: physical chemistry of textile dyeing; functional finishing of textiles; sustainable processing of textiles; bio-based dyes and finishes

Special Issue Information

Dear Colleagues,

Textiles are an indispensible part of our daily life. In the recent decade, tremendous achievements on smart and functional textiles have been made to meet the fast-growing and diversifying demands of customers. On the other hand, the increasing pursuit of compatibility between environmental and economic interests is also driving the conventional one, upgrading towards the next-generation of sustainable textile industry. Fortunately, novel materials and techniques are continuously being incorporated into textile processing. For example, bio-based or bio-degradable dyes and finishes are being discovered or fabricated for textiles to replace the potentially hazardous chemicals; less-to-none water-use techniques (e.g., inket printing, UV radiation, ultrasound, ScCO2) are utilised, and more are on the way. However, the textile treatment mechanism at each particular circumstance, and how to further enhance the processing sustainabiliy and the textile performance by using these new strategies, are not sufficiently investigated at present. This Special Issue aims to include but not be limited to the recent advances in application or theoretical studies for the pretreatment, dyeing, printing, and finishing of textile materials.

Dr. Yuyang Zhou
Prof. Dr. Rencheng Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bio-based or bio-degradable dyes and finishes
  • smart and functional textiles
  • water and energy-saving process
  • sustainable textile production
  • colouration and functionalisation
  • adsorption behaviour and mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 3470 KiB  
Article
Facilely Promoting the Concentration of Baicalin in Polylactic Acid Fiber for UV Shielding and Antibacterial Functions: A Customized and Sustainable Approach
by Yuyang Zhou, Peng Deng and Wei Chen
Materials 2024, 17(15), 3734; https://doi.org/10.3390/ma17153734 - 28 Jul 2024
Viewed by 587
Abstract
There is a significant trend towards the integration of natural substances with bio-polymers for fully bio-based functional composites. Polylactic acid is regarded as a promising biodegradable polymer for replacing synthetic polymers. Differing from the case of natural fiber, the incompatibility of polylactic acid [...] Read more.
There is a significant trend towards the integration of natural substances with bio-polymers for fully bio-based functional composites. Polylactic acid is regarded as a promising biodegradable polymer for replacing synthetic polymers. Differing from the case of natural fiber, the incompatibility of polylactic acid with bio-based molecules prevents it from being used to fabricate high-quality sustainable composites. This work presents a simultaneous ultraviolet shielding and antibacterial finishing process of polylactic acid combined with bioactive baicalin and an eco-friendly ester, which is highlighted for (a) the lack of synthetic chemicals involved in such process, (b) adsorption enhancement achieved at a mild temperature, and (c) marginal color change on treated polylactic acid. A response surface methodology was adopted to analyze the impacts of various factors on the baicalin quantity in polylactic acid, and to optimize the treatment condition. The uptake ratio of baicalin in polylactic acid was drastically promoted from 8.5 mg/g to 21.1 mg/g using methyl cinnamate. The response surface methodology based on a central composite design experiment indicated that the usage of baicalin was the most significant factor followed by methyl cinnamate and temperature. After optimization, a very faint color depth of 1.2 was apparent, but UPF 50+ and 92% bacterial reduction could be achieved. In all, the success in strengthening of the functionalities of polylactic acid extends the applications of polylactic acid products. Full article
Show Figures

Figure 1

20 pages, 7012 KiB  
Article
Surface Modification of Silk Fabric by Polysaccharide Derivatives towards High-Quality Printing Performance Using Bio-Based Gardenia Blue Ink
by Yan Liang, Ni Wang, Qing Li and Huiyu Jiang
Materials 2024, 17(14), 3611; https://doi.org/10.3390/ma17143611 - 22 Jul 2024
Viewed by 647
Abstract
Ink-jet-printed silk, a premium textile material, was achieved by utilizing a bio-based gardenia blue dye. However, the sharpness of the printing pattern is difficult to control due to the limited water-retention capacity of silk. To address this issue, three polysaccharide derivatives, namely, sodium [...] Read more.
Ink-jet-printed silk, a premium textile material, was achieved by utilizing a bio-based gardenia blue dye. However, the sharpness of the printing pattern is difficult to control due to the limited water-retention capacity of silk. To address this issue, three polysaccharide derivatives, namely, sodium alginate (SA), low-viscosity hydroxypropyl methyl cellulose (HPMC-I), and high-viscosity hydroxypropyl methyl cellulose (HPMC-II), were employed as thickeners to modify the silk by the dipping–padding method. Firstly, the preparation of the gardenia blue ink and the rheology assessment of the thickener solution were conducted. Furthermore, the impacts of different thickeners on the micro-morphology, element composition, and hydrophilicity of the silk, along with the wetting behavior of the ink on the silk, were analyzed comparatively in order to identify an appropriate thickener for preserving pattern outlines. Lastly, the color features, color fastness, and wearing characteristics of the printed silk were discussed to evaluate the overall printing quality. Research results showed that the optimized ink formulation, comprising 12% gardenia blue, 21% alcohols, and 5.5% surfactant, met the requirements for ink-jet printing (with a viscosity of 4.48 mPa·s, a surface tension of 34.12 mN/m, and a particle size of 153 nm). The HPMC-II solution exhibited prominent shear-thinning behavior, high elasticity, and thixotropy, facilitating the achievement of an even modification effect. The treatment of the silk with HPMC-II resulted in the most notable decrease in hydrophilicity. This can be attributed to the presence of filled gaps and a dense film on the fibers’ surface after the HPMC-II treatment, as observed by scanning electron microscopy. Additionally, X-ray photoelectron spectroscopy analysis confirmed that the HPMC-II treatment introduced the highest content of hydrophobic groups on the fiber surface. The reduced hydrophilicity inhibited the excessive diffusion and penetration of gardenia blue ink, contributing to a distinct printing image and enhanced apparent color depth. Moreover, the printed silk demonstrated qualified color fastness to rubbing and soaping (exceeding grade four), a soft handle feeling, an ignorable strength loss (below 5%), and a favorable air/moisture penetrability. In general, the surface modification with the HPMC-II treatment has been proven as an effective strategy for upgrading the image quality of bio-based dye-printed silk. Full article
Show Figures

Figure 1

18 pages, 6156 KiB  
Article
Modern Electromagnetic-Radiation-Shielding Materials Made Using Different Knitting Techniques
by Zbigniew Mikołajczyk, Iwona Nowak, Łukasz Januszkiewicz, Monika Szewczyk and Joanna Junak
Materials 2024, 17(13), 3052; https://doi.org/10.3390/ma17133052 - 21 Jun 2024
Viewed by 809
Abstract
This paper summarizes the possibility of employing knitted textile barriers as a shield against electromagnetic fields to protect the human body from their negative impact. Ten variants of knitted fabrics made of electrically conductive yarns, steel, and copper wire that differed in stitch [...] Read more.
This paper summarizes the possibility of employing knitted textile barriers as a shield against electromagnetic fields to protect the human body from their negative impact. Ten variants of knitted fabrics made of electrically conductive yarns, steel, and copper wire that differed in stitch pattern, structural parameters, and raw material, were designed, manufactured, and tested. The knitted fabrics produced differed in structural parameters, including course and wale density, surface density, thickness, thread length in the loop, wale and course take-up, volume cover factor, and surface porosity. These parameters were examined in accordance with the research methodology used in knitting. Barrier measurements were taken in the direction of the wales and in the direction of the courses for two frequencies of electromagnetic fields: 2–4 GHz and 4–7 GHz. It was observed that the shielding effectiveness of the manufactured materials depends on the structural parameters of the fabric, the stiches applied, and the type of yarn. Full article
Show Figures

Figure 1

Back to TopTop