Mathematical Modeling of Disease Dynamics

A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "Mathematical Biology".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 797

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mathematics, University of Nebraska–Lincoln, Lincoln, NE 68588, USA
Interests: mathematical modeling; epidemiology; ecology; life history theory; tree physiology

Special Issue Information

Dear Colleagues,

This Special Issue is devoted to mathematical modeling in epidemiology, immunology and immuno-epidemiology, where the host species may be humans, other animals or plants. Papers will focus primarily on modeling questions; that is, it is expected that there will be thoughtful and reflective consideration of appropriate assumptions and conclusions. Papers devoted primarily to data analysis or mathematical methods are outside the scope of this issue.

Prof. Dr. Glenn Ledder
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mathematical biology
  • epidemiology
  • immunology
  • immuno-epidemiology
  • dynamical systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

30 pages, 1038 KiB  
Article
Mathematical Modeling and Transmission Dynamics Analysis of the African Swine Fever Virus in Benin
by Sèna Yannick Ayihou, Têlé Jonas Doumatè, Cedric Hameni Nkwayep, Samuel Bowong Tsakou and Romain Glèlè Kakai
Mathematics 2024, 12(11), 1749; https://doi.org/10.3390/math12111749 - 4 Jun 2024
Viewed by 556
Abstract
African swine fever (ASF) is endemic in many African countries, and its control is challenging because no vaccine or treatment is available to date. Nowadays, mathematical modeling is a key tool in infectious disease studies, complementing traditional biological investigations. In this study, we [...] Read more.
African swine fever (ASF) is endemic in many African countries, and its control is challenging because no vaccine or treatment is available to date. Nowadays, mathematical modeling is a key tool in infectious disease studies, complementing traditional biological investigations. In this study, we propose and analyze a mathematical model for the transmission dynamics of African swine fever (ASF) in Benin that considers the free-living virus in the environment. We provide the theoretical results of the model. The study of the model is conducted by first proving that the model is well posed by showing the positivity and the boundedness of solutions as well as the existence and uniqueness of the solution. We compute the control reproduction number Rc as well as the basic reproduction number R0, which helps to analyze the extinction or the persistence of the disease in the pig population. We provide the global attractivity of the disease-free equilibrium and the endemic equilibrium and study their stabilities. After, we estimate some unknown parameters from the proposed model, and the sensitivity analysis is carried out to determine the parameters that influence the control reproduction number. Finally, through numerical simulations, in the current situation, we find that R0=2.78, which implies that the disease will not die out without any control measures and Rc=1.55 showing that the eradication of the disease highly depends on the control measures taken to reduce disease transmission. Full article
(This article belongs to the Special Issue Mathematical Modeling of Disease Dynamics)
Show Figures

Figure 1

Back to TopTop