Interactions between Exercise Physiology and Metabolism

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Endocrinology and Clinical Metabolic Research".

Deadline for manuscript submissions: 30 December 2024 | Viewed by 1554

Special Issue Editors


E-Mail Website
Guest Editor
China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
Interests: exercise and health promotion

E-Mail Website
Guest Editor
Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
Interests: the regulation of insulin secretion in diabetes

Special Issue Information

Dear Colleagues,

Due to factors such as insufficient physical activity, excessive food consumption, and inhospitable environments, worldwide, the incidence of chronic diseases such as metabolic and non-communicable diseases is high; such incidence results in unhealthy consumption, accumulation of fat, and metabolic disorders. Exercise, as a non-pharmacological and economic therapy, can upregulate a large number of substances in the body, such as exerkines; these substances may then participate in the regulation of signaling pathways, improve physical health, prevent and treat chronic diseases, and promote the recovery of health.

This Special Issue is dedicated to the intersection of metabolism and physical activity, and the topics covered will include (but are not limited to) studies on the impact of exercise on metabolic health, the role of physical activity in preventing and managing chronic diseases, the molecular mechanisms underlying exercise-induced metabolic changes, the development of non-pharmacological interventions for enhancing metabolic functions and overall health, and the role of nutrient metabolism in improving performance.

Dr. Lijing Gong
Dr. Enming Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • exercise
  • metabolism
  • physical activity
  • chronic disease prevention
  • exerkines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3638 KiB  
Article
Based on Sportomics: Comparison of Physiological Status of Collegiate Sprinters in Different Pre-Competition Preparation Periods
by Pengyu Fu, Xiaomin Duan, Yuting Zhang, Xiangya Dou and Lijing Gong
Metabolites 2024, 14(10), 527; https://doi.org/10.3390/metabo14100527 - 29 Sep 2024
Viewed by 446
Abstract
This study aimed to assess the impact of pre-competition training by comparing the differences of collegiate sprinters in physiological state between strengthening and tapering training period by sportomics and combining their sport performance. Fifteen collegiate sprinters were investigated or tested on their body [...] Read more.
This study aimed to assess the impact of pre-competition training by comparing the differences of collegiate sprinters in physiological state between strengthening and tapering training period by sportomics and combining their sport performance. Fifteen collegiate sprinters were investigated or tested on their body composition, dietary habits, energy expenditure, sleep efficiency, heart rate and respiratory rate during training, blood (blood cells, biochemical and immune markers) and urine (urinalysis), gut microbiome distribution, microbiome and blood metabolites, and their functions during the strengthening (Group A) and tapering training period (Group B) prior to competing in the national competitions. We found that 26.67% of sprinters achieved personal bests (PB) after the competition. The limb skeletal muscle mass and lymphocyte ratio of male sprinters in Group B were lower than those in Group A, and the serum creatine kinase (CK) level was higher than Group A (p < 0.05). The levels of serum CK, interleukin-6 (IL-6), interleukin-1β (IL-1β), and urine-specific gravity (SG) of the two groups were higher than the upper limit of the reference value. The detection rates of urine white blood cell (WBC) and protein in Group B were higher than those in Group A. The gut microbiome health index (GMHI) of Group A was higher than that of Group B, and the microbial dysbiosis index was lower than that of Group B. The ratio of Firmicutes/Bacteroidota (F/B) in Group A was higher than that in Group B. There were 65 differential metabolites in the A/B group, and the enriched pathway was mainly the NF-kappa B signaling pathway (up); B/T cell receptor signaling pathway (up); Th1 and Th2 cell differentiation (up); phenylalanine metabolism (up); and growth hormone synthesis, secretion, and action (up). There were significant differences in blood metabolites between the A and B groups, with a total of 89 differential metabolites, and the enriched pathway was mainly the NF-kappa B signaling pathway (up), T cell receptor signaling pathway (up), Th1 and Th2 cell differentiation (up), and glycerophospholipid metabolism (down). In conclusion, the imbalance of the gut microbiome and inflammation and immune-related metabolites of collegiate sprinters during the pre-competition tapering training period may be the cause of their limited sports performance. Full article
(This article belongs to the Special Issue Interactions between Exercise Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 4420 KiB  
Article
Plasma Metabolomics Study on the Impact of Different CRF Levels on MetS Risk Factors
by Xiaoxiao Fei, Qiqi Huang and Jiashi Lin
Metabolites 2024, 14(8), 415; https://doi.org/10.3390/metabo14080415 - 27 Jul 2024
Viewed by 789
Abstract
To investigate the metabolomic mechanisms by which changes in cardiorespiratory fitness (CRF) levels affect metabolic syndrome (MetS) risk factors and to provide a theoretical basis for the improvement of body metabolism via CRF in people with MetS risk factors, a comparative blood metabolomics [...] Read more.
To investigate the metabolomic mechanisms by which changes in cardiorespiratory fitness (CRF) levels affect metabolic syndrome (MetS) risk factors and to provide a theoretical basis for the improvement of body metabolism via CRF in people with MetS risk factors, a comparative blood metabolomics study of individuals with varying levels of CRF and varying degrees of risk factors for MetS was conducted. Methods: Ninety subjects between the ages of 40 and 45 were enrolled, and they were categorized into low-MetS (LM ≤ two items) and high MetS (HM > three items) groups, as well as low- and high-CRF (LC, HC) and LCLM, LCLM, LCHM, and HCHM groups. Plasma was taken from the early morning abdominal venous blood. LC-MS was conducted using untargeted metabolomics technology, and the data were statistically and graphically evaluated using SPSS26.0 and R language. Results: (1) There were eight common differential metabolites in the HC vs. LC group as follows: methionine (↓), γ-aminobutyric acid (↑), 2-oxoglutatic acid (↑), arginine (↑), serine (↑), cis-aconitic acid (↑), glutamine (↓), and valine (↓); the HM vs. LM group are contrast. (2) In the HCHM vs. LCLM group, trends were observed in 2-oxoglutatic acid (↑), arginine (↑), serine (↑), cis-aconitic acid (↑), glutamine (↓), and valine (↓). (3) CRF and MetS risk factors jointly affect biological metabolic pathways such as arginine biosynthesis, TCA cycle, cysteine and methionine metabolism, glycine, serine, and threonine metabolism, arginine and proline metabolism, and alanine, aspartate, and glutamate metabolism. Conclusion: The eight common differential metabolites can serve as potential biomarkers for distinguishing individuals with different CRF levels and varying degrees of MetS risk factors. Increasing CRF levels may potentially mitigate MetS risk factors, as higher CRF levels are associated with reduced MetS risk. Full article
(This article belongs to the Special Issue Interactions between Exercise Physiology and Metabolism)
Show Figures

Figure 1

Back to TopTop