Sports: Nutrition and Metabolism in Relation to Athletes’ Health and Performance

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Nutrition and Metabolism".

Deadline for manuscript submissions: 5 August 2024 | Viewed by 4818

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
Interests: exercise biochemistry and physiology; exercise metabolomics; sport nutrition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The objective of this Special Issue is to enhance the understanding of the contribution of nutritional and metabolic factors to the health and performance of sports athletes and practitioners. Consequently, we welcome articles focusing on sports athlete and practitioner supplementation, rapid weight loss, nutritional requirements, and their impact on health and performance. Moreover, this Special Issue aims to explore the effects of sports practice and training on human metabolism and energy requirements. Lastly, we are particularly interested in investigations regarding the influence of nutritional interventions on sports athletes' metabolism and how this can impact their health and performance.

Dr. Vassilis Mougios
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sports
  • physiology
  • metabolism
  • nutrition
  • rapid weight loss
  • body mass maintenance
  • performance
  • energy system contributions

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1044 KiB  
Article
Development of an LC-HRMS/MS Method for Quantifying Steroids and Thyroid Hormones in Capillary Blood: A Potential Tool for Assessing Relative Energy Deficiency in Sport (RED-S)
by Chiara Tuma, Andreas Thomas, Hans Braun and Mario Thevis
Metabolites 2024, 14(6), 328; https://doi.org/10.3390/metabo14060328 - 12 Jun 2024
Viewed by 429
Abstract
Relative energy deficiency in sport (RED-S) is a condition that arises from persistent low energy availability (LEA), which affects the hypothalamic–pituitary axis and results in alterations of several hormones in both male and female athletes. As frequent blood hormone status determinations using venipuncture [...] Read more.
Relative energy deficiency in sport (RED-S) is a condition that arises from persistent low energy availability (LEA), which affects the hypothalamic–pituitary axis and results in alterations of several hormones in both male and female athletes. As frequent blood hormone status determinations using venipuncture are rare in sports practice, microsampling offers promising possibilities for preventing and assessing RED-S. Therefore, this study aimed at developing a liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS) method for quantifying relevant steroids and thyroid hormones in 30 μL of capillary blood obtained using Mitra® devices with volumetric absorptive microsampling technology (VAMS®). The results of the study showed that all validation criteria were met, including a storage stability of more than 28 days in a frozen state (−18 °C) and 14 days at room temperature (20 °C). The validated assay provided precise (<12%) and accurate (<13%) results for all the target analytes. Furthermore, as a proof of concept, autonomously collected VAMS® samples from 50 female and male, healthy, active adults were analyzed. The sensitivity of all analytes was adequate to quantify the decreased hormone concentrations in the RED-S state, as all authentic samples could be measured accordingly. These findings suggest that self-collected VAMS® samples offer a practical opportunity for regular hormone measurements in athletes and can be used for early RED-S assessment and progress monitoring during RED-S recovery. Full article
Show Figures

Figure 1

9 pages, 775 KiB  
Article
Effect of Fluid Intake on Acute Changes in Plasma Volume: A Randomized Controlled Crossover Pilot Trial
by Janis Schierbauer, Sabrina Sanfilippo, Auguste Grothoff, Ulrich Fehr, Nadine Wachsmuth, Thomas Voit, Paul Zimmermann and Othmar Moser
Metabolites 2024, 14(5), 263; https://doi.org/10.3390/metabo14050263 - 6 May 2024
Viewed by 704
Abstract
Plasma volume (PV) undergoes constant and dynamic changes, leading to a large intra-day variability in healthy individuals. Hydration is known to induce PV changes; however, the response to the intake of osmotically different fluids is still not fully understood. In a randomized controlled [...] Read more.
Plasma volume (PV) undergoes constant and dynamic changes, leading to a large intra-day variability in healthy individuals. Hydration is known to induce PV changes; however, the response to the intake of osmotically different fluids is still not fully understood. In a randomized controlled crossover trial, 18 healthy individuals (10 females) orally received an individual amount of an isotonic sodium-chloride (ISO), Ringer (RIN), or glucose (GLU) solution. Hemoglobin mass (Hbmass) was determined with the optimized carbon monoxide re-breathing method. Fluid-induced changes in PV were subsequently calculated based on capillary hemoglobin concentration ([Hb]) and hematocrit (Hct) before and then every 10 minutes until 120 min (t0–120) after the fluid intake and compared to a control trial arm (CON), where no fluid was administered. Within GLU and CON trial arms, no statistically significant differences from baseline until t120 were found (p > 0.05). In the ISO trial arm, PV was significantly increased at t70 (+138 mL, p = 0.01), t80 (+191 mL, p < 0.01), and t110 (+182 mL, p = 0.01) when compared to t0. Moreover, PV in the ISO trial arm was significantly higher at t70 (p = 0.02), t110 (p = 0.04), and t120 (p = 0.01) when compared to the same time points in the CON trial arm. Within the RIN trial arm, PV was significantly higher between t70 and t90 (+183 mL, p = 0.01) and between t110 (+194 mL, p = 0.03) and t120 (+186 mL, p < 0.01) when compared to t0. These results demonstrated that fluids with a higher content of osmotically active particles lead to acute hemodilution, which is associated with a decrease in [Hb] and Hct. These findings underpin the importance of the hydration state on PV and especially on PV constituent levels in healthy individuals. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 1188 KiB  
Review
Effects of the Menstrual Cycle and Hormonal Contraceptive Use on Metabolic Outcomes, Strength Performance, and Recovery: A Narrative Review
by Hannah E. Cabre, Lacey M. Gould, Leanne M. Redman and Abbie E. Smith-Ryan
Metabolites 2024, 14(7), 347; https://doi.org/10.3390/metabo14070347 - 21 Jun 2024
Viewed by 619
Abstract
The effects of female sex hormones on optimal performance have been increasingly recognized as an important consideration in exercise and sport science research. This narrative review explores the findings of studies evaluating the effects of menstrual cycle phase in eumenorrheic women and the [...] Read more.
The effects of female sex hormones on optimal performance have been increasingly recognized as an important consideration in exercise and sport science research. This narrative review explores the findings of studies evaluating the effects of menstrual cycle phase in eumenorrheic women and the use of hormonal contraception (oral contraceptives and hormonal intrauterine devices) on metabolism, muscular strength, and recovery in active females. Ovarian hormones are known to influence metabolism because estrogen is a master regulator of bioenergetics. Importantly, the menstrual cycle may impact protein synthesis, impacting skeletal muscle quality and strength. Studies investigating muscular strength in eumenorrheic women report equivocal findings between the follicular phase and luteal phase with no differences compared to oral contraceptive users. Studies examining recovery measures (using biomarkers, blood lactate, and blood flow) do not report clear or consistent effects of the impact of the menstrual cycle or hormonal contraception use on recovery. Overall, the current literature may be limited by the evaluation of only one menstrual cycle and the use of group means for statistical significance. Hence, to optimize training and performance in females, regardless of hormonal contraception use, there is a need for future research to quantify the intra-individual impact of the menstrual cycle phases and hormonal contraceptive use in active females. Full article
Show Figures

Figure 1

14 pages, 839 KiB  
Review
Physiological Perturbations in Combat Sports: Weight Cycling and Metabolic Function—A Narrative Review
by Modesto A. Lebron, Jeffrey R. Stout and David H. Fukuda
Metabolites 2024, 14(2), 83; https://doi.org/10.3390/metabo14020083 - 24 Jan 2024
Viewed by 2574
Abstract
Combat sports athletes seeking a competitive edge often engage in weight management practices to become larger than their opponents, which ultimately includes periods of gradual weight loss, rapid weight loss, and weight regain. This pattern of weight loss and regain is known as [...] Read more.
Combat sports athletes seeking a competitive edge often engage in weight management practices to become larger than their opponents, which ultimately includes periods of gradual weight loss, rapid weight loss, and weight regain. This pattern of weight loss and regain is known as weight cycling and often includes periods of low energy availability, making combat sports athletes susceptible to metabolic dysfunction. This narrative review represents an effort to explore the metabolic perturbations associated with weight cycling and outline the short-, medium-, and long-term effects on metabolic flexibility, function, and health. The short-term effects of rapid weight loss, such as a reduced metabolic rate and alterations to insulin and leptin levels, may prelude the more pronounced metabolic disturbances that occur during weight regain, such as insulin resistance. Although definitive support is not currently available, this cycle of weight loss and regain and associated metabolic changes may contribute to metabolic syndrome or other metabolic dysfunctions over time. Full article
Show Figures

Figure 1

Back to TopTop