Recent Advances in Metal Processing and Manufacturing: Technique, Method, Performance, and Microstructure

A special issue of Metals (ISSN 2075-4701).

Deadline for manuscript submissions: 25 November 2024 | Viewed by 932

Special Issue Editor

School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
Interests: metal additive manufacturing; gradient structure; Mg alloy; Ti alloy; steel

Special Issue Information

Dear Colleagues,

In recent years, with the popularity and application of additive manufacturing technology (commonly known as 3D printing technology), metal additive manufacturing technology has begun to gain traction in the manufacturing field and has rapidly developed into one of the most promising advanced manufacturing technologies in the 3D printing field. At present, metal parts formed by metal additive manufacturing technology are gradually being used in aerospace, medical equipment, automobile manufacturing, and other fields.

Metal additive manufacturing is a process that uses fine, metal powders to create strong, complex components that are designed either by using a computer-aided design (CAD) program or by taking a 3D scan of the object. It offers the possibility to produce complex parts without the design constraints of traditional manufacturing routes.

This Special Issue kindly invites researchers from the aforementioned fields to present new theoretical or experimental results and recent advancements in the form of research articles and reviews.

Dr. Jing Han
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal additive manufacturing
  • gradient structure
  • Mg alloy
  • Ti alloy
  • steel

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 30210 KiB  
Article
On the Mechanical Behavior of LP-DED C103 Thin-Wall Structures
by Brandon Colón, Mehrdad Pourjam, Gabriel Demeneghi, Kavan Hazeli, Omar Mireles and Francisco Medina
Metals 2024, 14(9), 958; https://doi.org/10.3390/met14090958 - 23 Aug 2024
Viewed by 549
Abstract
Laser Powder Directed Energy Deposition (LP-DED) can produce thin-wall features on the order of 1 mm. These features are essential for large structures operating in extreme environments such as regeneratively cooled nozzles and heat exchangers, which often make use of refractory metals. In [...] Read more.
Laser Powder Directed Energy Deposition (LP-DED) can produce thin-wall features on the order of 1 mm. These features are essential for large structures operating in extreme environments such as regeneratively cooled nozzles and heat exchangers, which often make use of refractory metals. In this work, the mechanical behavior of LP-DED C103 was investigated via quasi-static tensile testing and low cycle fatigue (LCF) testing. The effects of vacuum stress relief (SR) and hot isostatic pressing (HIP) heat treatments were investigated for specimens in the vertical and horizontal build orientations during tensile testing. The AB and SR properties were lower than literature values for wrought and laser powder bed fusion (L-PBF) bulk components but higher than electron beam powder bed fusion (EB-PBF). The application of a HIP cycle improved strength by 7% and ductility by 27% past the initial as-built condition. Fracture images reveal that interlayer stress concentration sites are responsible for fracture in specimens in the vertical orientation. Meanwhile, fracture in the horizontal specimens mainly propagates at a slanted angle typical of plane stress conditions. The LCF results show cycles to failure ranging from 100 cycles to 8000 cycles for max strain levels of 2% and 0.5%, respectively. Fractography on the fatigue specimens reveals an increasing propagation zone as max strain levels are increased. The impact of these findings and future work are discussed in detail. Full article
Show Figures

Figure 1

Back to TopTop