Green and Intelligent Steelmaking Technologies with Low Carbon Emissions

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Extractive Metallurgy".

Deadline for manuscript submissions: 20 November 2024 | Viewed by 739

Special Issue Editors


E-Mail Website
Guest Editor
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Interests: EAF steelmaking; CO2 utilization; injection metallurgy; low-carbon metallurgy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Interests: simulation; theoretical model; steelmaking; comprehensive utilization of complex ores
Special Issues, Collections and Topics in MDPI journals
College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi’an 710055, China
Interests: steelmaking; non-metallic inclusions; clean steel; secondary refining; slag system
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Reducing carbon emissions from the steel industry is vital for achieving the strategic goals of carbon peak and carbon neutrality. Steelmaking is an important link in the metallurgical process of iron and steel, and it is necessary to carry out relative technical innovation in order to reduce carbon emissions from steelmaking processes. Currently, converter steelmaking and electric arc furnace steelmaking are the main steelmaking methods and in recent years, many green and intelligent steelmaking technologies have been proposed and developed, especially in slag utilization, process optimization, green electric steelmaking, intelligent smelting and so on.

Dr. Guangsheng Wei
Dr. Lingzhi Yang
Dr. Ming Lv
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electric arc furnace steelmaking
  • converter steelmaking
  • renewable energy utilization in steelmaking processes
  • carbon capture, utilization and storage (CCUS) in steelmaking processes
  • resource utilization of dust and slag
  • intelligent steelmaking technologies
  • steelmaking process control model

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 19567 KiB  
Article
Evaluation of Energy Utilization Efficiency and Optimal Energy Matching Model of EAF Steelmaking Based on Association Rule Mining
by Lingzhi Yang, Zhihui Li, Hang Hu, Yuchi Zou, Zeng Feng, Weizhen Chen, Feng Chen, Shuai Wang and Yufeng Guo
Metals 2024, 14(4), 458; https://doi.org/10.3390/met14040458 - 12 Apr 2024
Viewed by 488
Abstract
In the iron and steel industry, evaluating the energy utilization efficiency (EUE) and determining the optimal energy matching mode play an important role in addressing increasing energy depletion and environmental problems. Electric Arc Furnace (EAF) steelmaking is a typical short crude steel production [...] Read more.
In the iron and steel industry, evaluating the energy utilization efficiency (EUE) and determining the optimal energy matching mode play an important role in addressing increasing energy depletion and environmental problems. Electric Arc Furnace (EAF) steelmaking is a typical short crude steel production route, which is characterized by an energy-intensive fast smelting rhythm and diversified raw charge structure. In this paper, the energy model of the EAF steelmaking process is established to conduct an energy analysis and EUE evaluation. An association rule mining (ARM) strategy for guiding the EAF production process based on data cleaning, feature selection, and an association rule (AR) algorithm was proposed, and the effectiveness of this strategy was verified. The unsupervised algorithm Auto-Encoder (AE) was adopted to detect and eliminate abnormal data, complete data cleaning, and ensure data quality and accuracy. The AE model performs best when the number of nodes in the hidden layer is 18. The feature selection determines 10 factors such as the hot metal (HM) ratio and HM temperature as important data features to simplify the model structure. According to different ratios and temperatures of the HM, combined with k-means clustering and an AR algorithm, the optimal operation process for the EUE in the EAF steelmaking under different smelting modes is proposed. The results indicated that under the conditions of a low HM ratio and low HM temperature, the EUE is best when the power consumption in the second stage ranges between 4853 kWh and 7520 kWh, the oxygen consumption in the second stage ranges between 1816 m3 and 1961 m3, and the natural gas consumption ranges between 156 m3 and 196 m3. Conversely, under the conditions of a high HM ratio and high HM temperature, the EUE tends to decrease, and the EUE is best when the furnace wall oxygen consumption ranges between 4732 m3 and 5670 m3, and the oxygen consumption in the second stage ranges between 1561 m3 and 1871 m3. By comparison, under different smelting modes, the smelting scheme obtained by the ARM has an obvious effect on the improvement of the EUE. With a high EUE, the improvement of the A2B1 smelting mode is the most obvious, from 24.7% to 53%. This study is expected to provide technical ideas for energy conservation and emission reduction in the EAF steelmaking process in the future. Full article
Show Figures

Figure 1

Back to TopTop