molecules-logo

Journal Browser

Journal Browser

Advances in Medicinal Chemistry for Age-Related Diseases

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 819

Special Issue Editor


E-Mail Website
Guest Editor
Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
Interests: medicinal chemistry; organic chemistry; chemical biology; drug discovery; drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Age-related diseases represent a growing global health concern as life expectancy increases worldwide. Conditions such as Alzheimer’s disease, Parkinson’s disease, cardiovascular disorders, type 2 diabetes, osteoporosis, and certain cancers are closely related to the aging process and often share common molecular and cellular pathways, including oxidative stress, inflammation, and mitochondrial dysfunction. Medicinal chemistry plays a pivotal role in identifying, designing, and optimizing small molecules and other therapeutic agents to target these complex mechanisms.

This Special Issue aims to highlight recent advances in medicinal chemistry that address the challenges of treating these complex diseases. Contributions may include the discovery of novel bioactive molecules, structure–activity relationship studies, the development of multitarget-directed ligands, novel strategies for improving drug selectivity and bioavailability, and insights from computational approaches.

We invite original research articles, reviews, communications and concept papers from both academia and industry that explore innovative strategies for the diagnosis and treatment of age-related conditions. This Special Issue seeks to bring together interdisciplinary efforts and collaborative research to provide a comprehensive overview of the latest findings in this broad field.

Dr. Maria João Matos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • age-related diseases
  • neurodegenerative diseases
  • cardiovascular diseases
  • bioactive molecules
  • biomolecules
  • synthesis
  • computational studies
  • medicinal chemistry
  • chemical biology
  • drug discovery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 1413 KB  
Article
Multifunctional Tacrine–Quinoline Hybrids as Cholinesterase Inhibitors, Aβ Aggregation Blockers, and Metal Chelators for Alzheimer’s Therapy
by Xiaohua Wang, Minglan Ma, Yalan Feng, Jian Liu and Gang Wang
Molecules 2025, 30(17), 3489; https://doi.org/10.3390/molecules30173489 - 25 Aug 2025
Viewed by 582
Abstract
A novel series of multifunctional tacrine–quinoline hybrids were designed, synthesized, and evaluated as potential anti-Alzheimer’s agents. These compounds incorporate tacrine for cholinesterase’s inhibition and 8-hydroxyquinoline for metal chelation. Piperazine was selected as a linker to provide conformational flexibility and to create favorable cation–π [...] Read more.
A novel series of multifunctional tacrine–quinoline hybrids were designed, synthesized, and evaluated as potential anti-Alzheimer’s agents. These compounds incorporate tacrine for cholinesterase’s inhibition and 8-hydroxyquinoline for metal chelation. Piperazine was selected as a linker to provide conformational flexibility and to create favorable cation–π interactions with residues in the mid-gorge region of AChE, enhancing dual-site binding with AChE to inhibit Aβ aggregation. In vitro studies demonstrated submicromolar inhibitory activity toward both AChE and BuChE, particularly for compounds 16e (IC50 = 0.10 μM for AChE, 0.043 μM for BuChE) and 16h (IC50 = 0.21 μM for AChE, 0.10 μM for BuChE). These compounds also exhibited potent inhibition of self-induced Aβ1–42 aggregation (16e: 80.5% ± 4.4%, 16h: 93.2% ± 3.9% at 20 μM). Kinetic analyses revealed mixed-type inhibition, suggesting dual binding to both CAS and PAS of AChE. UV–vis spectrometry confirmed the chelation of Cu2+ and Zn2+ ions by the 8-hydroxyquinoline moiety. These findings highlight the tacrine–quinoline scaffold as a promising platform for the discovery of a multitarget-directed anti-AD drug. Full article
(This article belongs to the Special Issue Advances in Medicinal Chemistry for Age-Related Diseases)
Show Figures

Figure 1

Back to TopTop