molecules-logo

Journal Browser

Journal Browser

Research and Application of Plant Sourced Polysaccharides—2nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 7680

Special Issue Editors


E-Mail Website
Guest Editor
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
Interests: polysaccharide; starch; jujube; NMR; polymer
Special Issues, Collections and Topics in MDPI journals
College of Food Science and Engineering, Northwest A&F University, Yangling China
Interests: polysaccharide; structure; anti-inflammatory, immunologic activity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polysaccharides are the most abundant and diverse class of organic compounds occurring in nature. They can be found in almost all plants and are also one of the most versatile materials available, and, therefore, have played a critical role in the development of new products, ranging from foods, nutraceuticals, cosmetics, and so on.

In recent years, with the increased attention paid to the study of natural polysaccharides, there have been significant developments in our knowledge of polysaccharides in each related aspect, which also promoted the exploitation of natural plant polysaccharides in the food and pharmaceutical industries, among others. Therefore, the purpose of this Special Issue is to cover a broad spectrum of original research and reviews contributions on natural plant polysaccharides.

We invite authors to contribute original research articles, as well as review articles, about the advances in the study and exploitation of natural plant polysaccharides, which have current or potential applications in areas such as functional foods, nutraceuticals, and pharmaceuticals.

Potential topics include, but are not limited to:

  • Novel chemical, enzymatic, and physical extraction techniques for natural plant polysaccharide preparation;
  • Physicochemical characterization and biological effects of plant polysaccharides;
  • Structural analysis and modification of plant polysaccharides;
  • Recent developments in the analytical methodologies of plant polysaccharides;
  • Study on the functional activity mechanism of plant polysaccharides;
  • Application of nature plant polysaccharides to foods, nutraceuticals, pharmaceuticals, cosmetics, or other products.
  • Any other topics that are deemed relevant to the main scope of this Special Issue.

Dr. Xiaolong Ji
Dr. Xin Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polysaccharide
  • characterization
  • structure
  • physiochemical properties
  • functional activity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

20 pages, 9286 KiB  
Article
Ultrasound-Assisted Extraction of Polysaccharides from Mulberry Leaves Using Response Surface Methodology: Purification and Component Identification of Extract
by Teng Wang, Xiaolin Zou, Hong Zhang, Jiwen Li, Xiaoming Peng, Ruijun Ju, Zhaojun Jia, Zhenguo Wen and Cuiqing Li
Molecules 2025, 30(8), 1747; https://doi.org/10.3390/molecules30081747 - 14 Apr 2025
Viewed by 211
Abstract
In this study, an ultrasonic-assisted procedure for the extraction of mulberry leaf polysaccharides (MLPs) was investigated using response surface methodology with a 29-run Box–Behnken design. Four factors were investigated, and it was found that the factors influencing the process, in order of significance, [...] Read more.
In this study, an ultrasonic-assisted procedure for the extraction of mulberry leaf polysaccharides (MLPs) was investigated using response surface methodology with a 29-run Box–Behnken design. Four factors were investigated, and it was found that the factors influencing the process, in order of significance, were the extraction temperature > liquid-to-material ratio > ultrasonic power. Considering practical conditions, the parameters were adjusted to a liquid-to-material ratio of 16:1 mL/g, extraction time of 58 min, extraction temperature of 65 °C, and ultrasonic power of 500 W. Under these conditions, the yield of MLPs was 14.47%, which is close to the predicted value, indicating that the extraction process optimized by response surface methodology (RSM) is feasible. The separation and purification effects of macroporous resin and activated carbon on MLPs were investigated, with the D152 resin being considered the most suitable choice. The optimal separation conditions were found to be a sample concentration of 0.5 g/mL and an optimal flow rate of 1 mL/min. Thin-layer chromatography and infrared spectroscopy revealed that polysaccharides extracted from mulberry leaves are primarily composed of rhamnose, xylose, and arabinose. In conclusion, this study successfully optimized the ultrasonic-assisted extraction process of MLPs through response surface methodology, determined the optimal parameter combination, and verified its efficiency and stability. Under the optimal conditions obtained for ultrasonic-assisted extraction, the yield of MLPs is significantly higher than that reported in the previous literature. The decolorization process of crude mulberry leaf polysaccharide extract was also investigated, and the purified MLPs have clear monosaccharide composition and structural characteristics, providing a theoretical basis and technical support for their application in functional food or drug development. Full article
Show Figures

Figure 1

27 pages, 8522 KiB  
Article
Ultrasound-Assisted Extraction of Polysaccharides from Lyophyllum decastes: Structural Analysis and Bioactivity Assessment
by Qiong Wu, Bin Liang, Jiaming Wang and Yonggang Dai
Molecules 2025, 30(4), 961; https://doi.org/10.3390/molecules30040961 - 19 Feb 2025
Viewed by 537
Abstract
This study employed ultrasound-assisted extraction (UAE) to isolate polysaccharides from Lyophyllum decastes, which were subsequently fractionated into two components, LDP-A1 and LDP-B1, using DEAE cellulose-52 and Sephacryl S-500. The structural characteristics of the polysaccharides were preliminarily analyzed using high-performance liquid chromatography (HPLC), [...] Read more.
This study employed ultrasound-assisted extraction (UAE) to isolate polysaccharides from Lyophyllum decastes, which were subsequently fractionated into two components, LDP-A1 and LDP-B1, using DEAE cellulose-52 and Sephacryl S-500. The structural characteristics of the polysaccharides were preliminarily analyzed using high-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Congo red staining. The results indicate significant differences between LDP-A1 and LDP-B1 in terms of molecular weight, monosaccharide composition, and structural features. LDP-A1 (2.27 × 106 Da) exhibits a significantly higher molecular weight compared to LDP-B1 (9.80 × 105 Da), with distinct differences in monosaccharide types and content. Both polysaccharides contain β-glycosidic bonds. LDP-B1 adopts a sheet-like structure with an amorphous internal arrangement and a triple-helix configuration, whereas LDP-A1 is rod-shaped, with a crystalline internal structure, and lacks the triple-helix configuration. In terms of biological activity, both polysaccharides exhibit certain activities, but LDP-B1 shows significantly stronger activity in antioxidant, hypoglycemic, anti-inflammatory, and anticancer effects. In summary, LDPs exhibit significant biological activity, especially outstanding performance in antioxidant, hypoglycemic, anti-inflammatory, and anticancer effects, proving their potential for development in functional foods and pharmaceuticals. Their unique structural characteristics and diverse biological activities provide a solid theoretical foundation for further exploration of LDPs in health promotion and disease prevention, opening up new research directions and application prospects. Full article
Show Figures

Figure 1

19 pages, 4187 KiB  
Article
Separation, Purification, Structural Characterization, and In Vitro Hypoglycemic Activity of Polysaccharides from Panax notoginseng Leaves
by Xueling Zhang, Chongying Shi, Zilin Wang, Jiahe Dai, Chunhua Guan, Jun Sheng, Liang Tao and Yang Tian
Molecules 2025, 30(4), 830; https://doi.org/10.3390/molecules30040830 - 11 Feb 2025
Cited by 1 | Viewed by 679
Abstract
This study optimized the extraction process of crude polysaccharides from Panax notoginseng leaves (PNLP) using the ultrasonic-assisted dual-enzyme method through a single-factor combined with response surface experiment. The crude polysaccharides were subsequently purified and isolated with DEAE-Cellulose 52, followed by structural analysis, evaluation [...] Read more.
This study optimized the extraction process of crude polysaccharides from Panax notoginseng leaves (PNLP) using the ultrasonic-assisted dual-enzyme method through a single-factor combined with response surface experiment. The crude polysaccharides were subsequently purified and isolated with DEAE-Cellulose 52, followed by structural analysis, evaluation of antioxidant activity, and examination of digestive enzyme inhibition. The hypoglycemic effects of the purified components were further clarified. The results indicated that the optimized crude polysaccharide had an extraction yield of 17.13 ± 0.29%. The purified fraction PNLP-3 (eluted with 0.3 M NaCl) was obtained through DEAE-Cellulose 52 chromatography, exhibiting a total sugar content of 81.2% and a molecular weight of 16.57 kDa. PNLP is primarily composed of arabinose, galactose, and galacturonic acid, with molar percentages of 20.24%, 33.54%, and 24.27%, respectively. PNLP-3 is mainly composed of arabinose and galactose, with molar percentages of 29.97% and 49.35%, respectively. In this study of hypoglycemic activity, the IC50 values of PNLP-3 for α-glucosidase and α-amylase inhibition were 1.045 mg/mL and 9.53 mg/mL, respectively. Molecular docking results confirmed that PNLP-3 exhibits better inhibitory activity against α-glucosidase. Furthermore, PNLP-3 alleviated hyperglycemia in insulin-resistant HepG2 cells by enhancing glucose consumption and glycogen synthesis. The antioxidant activity of PNLP-3 exhibited a positive correlation with its concentration, potentially contributing to its hypoglycemic effects by reducing oxidative stress. These findings underscore the therapeutic potential of Panax notoginseng leaf polysaccharides in managing type 2 diabetes and offer new perspectives on the use of natural polysaccharides for regulating blood glucose. Full article
Show Figures

Figure 1

22 pages, 18595 KiB  
Article
Structural Characterization and Anti-Gouty Nephropathy Potential of Polysaccharides from Atractylodes chinensis
by Xue Chen, Ruipu Jia, Kai Zhang, Shiqing Sun, Mei Mei, Hong Zhao, Yu Shen, Yuliang Wang and Yu Zhang
Molecules 2025, 30(4), 757; https://doi.org/10.3390/molecules30040757 - 7 Feb 2025
Viewed by 728
Abstract
Polysaccharides derived from Atractylodes chinensis (DC.) Koidz. (ACP), a traditional Chinese medicine, were extracted and analyzed for their structural characteristics and anti-gouty nephropathy (GN) activity. Sprague-Dawley (SD) rats were divided into six groups: control, model, positive control, and three treatment groups (ACP-60-L, ACP-60-M, [...] Read more.
Polysaccharides derived from Atractylodes chinensis (DC.) Koidz. (ACP), a traditional Chinese medicine, were extracted and analyzed for their structural characteristics and anti-gouty nephropathy (GN) activity. Sprague-Dawley (SD) rats were divided into six groups: control, model, positive control, and three treatment groups (ACP-60-L, ACP-60-M, and ACP-60-H). Treatment significantly reduced inflammatory responses and renal damage, as evidenced by decreased levels of uric acid (UA), creatinine (Cr), and blood urea nitrogen (BUN), alongside modulation of NOD-like receptor protein 3 (NLRP3) expression in renal tissues. ACP-60 was fractionated into three polysaccharides, including ACP-60-A (Mw 9.18 kDa), ACP-60-B (Mw 58.21 kDa), and ACP-60-C (Mw 109.01 kDa) using DEAE-52 cellulose column chromatography. Monosaccharide analysis revealed that ACP-60-A predominantly comprised fructose (Fru) and glucose (Glc), ACP-60-B contained rhamnose (Rha), galactose (Gal), Fru, and mannose (Man), and ACP-60-C included Man, Gal, Rha and xylose (Xyl). In vitro studies using HK-2 cells confirmed the anti-GN activity of all three fractions, with ACP-60-A demonstrating the highest efficacy. Structural elucidation of ACP-60-A identified its main glycosidic linkages as a →1)-β-Fruf-(2→ backbone with α-Glcp-(1→ and β-Fruf-(2→ branches. The underlying mechanism of ACP-60-A’s anti-GN activity is associated with inhibition of the NLRP3 inflammasome signaling pathway, suppression of downstream inflammatory factor release, and downregulation of NLRP3, ASC, and Caspase-1 protein expression. Further studies demonstrated that the superior activity of ACP-60-A is attributable to its lower molecular weight, specific monosaccharide composition, and unique glycosidic bond arrangement. ACP-60-A shows potential for increased anti-GN efficacy through purification or modification, laying the groundwork for developing novel therapeutic agents for GN. Full article
Show Figures

Figure 1

13 pages, 7212 KiB  
Article
Clearance of Intracellular Pathogens with Hyaluronic Acid Nanomicelles Responsive to H2S and pH
by Jun Luo, Hui Huang, Junfeng Jiang, Wenyu Zheng, Peng Chen and Hongjin Bai
Molecules 2024, 29(24), 5971; https://doi.org/10.3390/molecules29245971 - 18 Dec 2024
Viewed by 589
Abstract
Hyaluronic acid (HA) is an acidic mucopolysaccharide of animal origin composed of repeating disaccharide units of N-acetylglucosamine and glucuronic acid. Due to its excellent biocompatibility, biodegradability, and selective affinity for CD44 receptors on cell surfaces, HA is widely employed as a drug carrier. [...] Read more.
Hyaluronic acid (HA) is an acidic mucopolysaccharide of animal origin composed of repeating disaccharide units of N-acetylglucosamine and glucuronic acid. Due to its excellent biocompatibility, biodegradability, and selective affinity for CD44 receptors on cell surfaces, HA is widely employed as a drug carrier. In our study, we aimed to target subcellular bacteria by grafting cystamine onto HA scaffolds through an amide reaction, producing a linker responsive to H2S and pH changes. Subsequently, hydrophobic dodecylamine was attached to HA, forming amphiphilic molecules. These amphiphilic entities can self-assemble into nanomicelles in an aqueous solution, thereby encapsulating the antibacterial agent triclosan (TCS). The resulting HA-based system (HASS-TCS) can be internalized via CD44-mediated endocytosis, releasing substantial amounts of streptomycin and TCS in H2S-rich and acidic environments. Additionally, HASS-TCS has demonstrated effectiveness in eradicating biofilms and addressing intracellular infections caused by Salmonella. This study underscores a novel pH-sensitive hyaluronic acid-based drug delivery system with significant potential for the effective treatment of intracellular infections. Full article
Show Figures

Graphical abstract

23 pages, 27195 KiB  
Article
The Isolation, Structural Characterization and Anti-Inflammatory Potentials of Neutral Polysaccharides from the Roots of Isatis indigotica Fort.
by Yu Shen, Shihao Wu, Mingming Song, Huiming Zhang, Hong Zhao, Lili Wu, Hongbo Zhao, Hongbin Qiu and Yu Zhang
Molecules 2024, 29(11), 2683; https://doi.org/10.3390/molecules29112683 - 5 Jun 2024
Cited by 5 | Viewed by 1559 | Correction
Abstract
Polysaccharides have been assessed as a potential natural active component in Chinese herbal medicine with anti-inflammatory properties. However, the complex and indefinite structures of polysaccharides limit their applications. This study explains the structures and anti-inflammatory potentials of three neutral polysaccharides, RIP-A1 (Mw [...] Read more.
Polysaccharides have been assessed as a potential natural active component in Chinese herbal medicine with anti-inflammatory properties. However, the complex and indefinite structures of polysaccharides limit their applications. This study explains the structures and anti-inflammatory potentials of three neutral polysaccharides, RIP-A1 (Mw 1.8 × 104 Da), RIP-B1 (Mw 7.4 × 104 Da) and RIP-B2 (Mw 9.3 × 104 Da), which were isolated from the roots of Isatis indigotica Fort. with sequenced ultrafiltration membrane columns, DEAE-52 and Sephadex G-100. The planar structures and microstructures of RIP-A1, RIP-B1 and RIP-B2 were further determined by HPGPC, GC–MS, methylation analysis, FT-IR, SEM and AFM, in which the structure of RIP-A1 was elucidated in detail using 1D/2D NMR. The Raw 264.7 cells were used for the anti-inflammatory activity in vitro. The results showed that RIP-A1, RIP-B1 and RIP-B2 are all neutral polysaccharides, with RIP-A1 having the smallest Mw and the simplest monosaccharide composition of the three. RIP-A1 is mainly composed of Ara and Gal, except for a small quantity of Rha. Its main structure is covered with glycosidic linkages of T-α-Araf, 1,2-α-Rhap, 1,5-α-Araf, T-β-Galp, 1,2,4-α-Rhap, 1,3,5-α-Araf and 1,6-β-Galp with 0.33:0.12:1.02:0.09:0.45:11.41:10.23. RIP-A1 significantly inhibited pro-inflammatory cytokines (NO, TNF-α, IL-6 and IL-1β) and increased anti-inflammatory cytokines (IL-4) in LPS-stimulated RAW 264.7 cells. Moreover, RIP-A1 could significantly inhibit the mRNA expression of TNF-α, IL-6 and L-1β. It could also activate IKK, p65 and IκBα (the components of the NF-κB signaling pathway). In conclusion, the above results show the structural characterization and anti-inflammatory potentials of RIP-A1 as an effective natural anti-inflammatory drug. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

18 pages, 3541 KiB  
Review
Recent Advances in Polysaccharides from Chaenomeles speciosa (Sweet) Nakai.: Extraction, Purification, Structural Characteristics, Health Benefits, and Applications
by Aiqi Yu, Wenjing Hu, Haizheng Bi, Lei Fu, Zhibin Wang, Meng Wang and Haixue Kuang
Molecules 2024, 29(13), 2984; https://doi.org/10.3390/molecules29132984 - 23 Jun 2024
Cited by 3 | Viewed by 1907
Abstract
This article systematically reviews the extraction and purification methods, structural characteristics, structure–activity relationship, and health benefits of C. speciosa polysaccharides, and their potential application in food, medicine, functional products, and feed, in order to provide a useful reference for future research. Chaenomeles speciosa [...] Read more.
This article systematically reviews the extraction and purification methods, structural characteristics, structure–activity relationship, and health benefits of C. speciosa polysaccharides, and their potential application in food, medicine, functional products, and feed, in order to provide a useful reference for future research. Chaenomeles speciosa (Sweet) Nakai. has attracted the attention of health consumers and medical researchers as a traditional Chinese medicine with edible, medicinal, and nutritional benefits. According to this study, C. speciosa polysaccharides have significant health benefits, such as anti-diaetic, anti-inflammatory and analgesic, anti-tumor, and immunomodulatory effects. Researchers determined the molecular weight, structural characteristics, and monosaccharide composition and ratio of C. speciosa polysaccharides by water extraction and alcohol precipitation. This study will lay a solid foundation for further optimization of the extraction process of C. speciosa polysaccharides and the development of their products. As an active ingredient with high value, C. speciosa polysaccharides are worthy of further study and full development. C. speciosa polysaccharides should be further explored in the future, to innovate their extraction methods, enrich their types and biological activities, and lay a solid foundation for further research and development of products containing polysaccharides that are beneficial to the human body. Full article
Show Figures

Graphical abstract

Other

Jump to: Research, Review

2 pages, 18374 KiB  
Correction
Correction: Shen et al. The Isolation, Structural Characterization and Anti-Inflammatory Potentials of Neutral Polysaccharides from the Roots of Isatis indigotica Fort. Molecules 2024, 29, 2683
by Yu Shen, Shihao Wu, Mingming Song, Huiming Zhang, Hong Zhao, Lili Wu, Hongbo Zhao, Hongbin Qiu and Yu Zhang
Molecules 2024, 29(21), 4987; https://doi.org/10.3390/molecules29214987 - 22 Oct 2024
Cited by 1 | Viewed by 787
Abstract
Errors in Figure [...] Full article
Show Figures

Figure 9

Back to TopTop