nutrients-logo

Journal Browser

Journal Browser

Dietary Fiber and Nutrition

A special issue of Nutrients (ISSN 2072-6643).

Deadline for manuscript submissions: closed (28 February 2013) | Viewed by 124976

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
Interests: colon cancer; inflammatory bowel disease; diet; microbiota
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed Open Access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charges (APC) for publication in this open access journal is 500 CHF (Swiss Francs) for well prepared manuscripts submitted before 30 June 2012. The APC for manuscripts submitted from 1 July 2012 onwards are 1000 CHF per accepted paper. In addition, a fee of 250 CHF may apply if English editing or extensive revisions must be undertaken by the Editorial Office.

Keywords

  • intestinal health
  • Gut microbiota
  • metabolism
  • obesity
  • cardiovascular disease
  • diabetes

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

459 KiB  
Article
Linseed Dietary Fibers Reduce Apparent Digestibility of Energy and Fat and Weight Gain in Growing Rats
by Mette Kristensen, Knud Erik Bach Knudsen, Henry Jørgensen, David Oomah, Susanne Bügel, Søren Toubro, Inge Tetens and Arne Astrup
Nutrients 2013, 5(8), 3287-3298; https://doi.org/10.3390/nu5083287 - 19 Aug 2013
Cited by 24 | Viewed by 8758
Abstract
Dietary fibers (DF) may affect energy balance, an effect often ascribed to the viscous nature of some water soluble DF, which affect luminal viscosity and thus multiple physiological processes. We have tested the hypothesis that viscous linseed DF reduce apparent nutrient digestibility, and [...] Read more.
Dietary fibers (DF) may affect energy balance, an effect often ascribed to the viscous nature of some water soluble DF, which affect luminal viscosity and thus multiple physiological processes. We have tested the hypothesis that viscous linseed DF reduce apparent nutrient digestibility, and limit weight gain, in a randomized feeding trial where 60 male, growing, Wistar rats, with an initial weight of ~200 g, were fed different diets (n = 10 per group): low DF control (C), 5% DF from cellulose (5-CEL), CEL + 5% DF from whole (5-WL) or ground linseed (5-GL), CEL + 5% DF from linseed DF extract (5-LDF), and CEL + 10% DF from linseed DF extract (10-LDF). Diets were provided ad libitum for 21 days. Feed intake and faecal output were measured during days 17–21. Faecal fat excretion increased with increasing DF content and was highest in the 10-LDF group. Apparent fat digestibility was highest with the C diet (94.9% ± 0.8%) and lowest (74.3% ± 0.6%) with the 10-LDF diet, and decreased in a non-linear manner with increasing DF (p < 0.001). Apparent fat digestibility also decreased with increased accessibility of DF (5-WL vs. 5-GL) and when the proportion of viscous DF increased (5-GL vs. 5-LDF). The 10-LDF resulted in a lower final body weight (258 ± 6.2 g) compared to C (282 ± 5.9 g), 5-CEL (281 ± 5.9 g), and 5-WL (285 ± 5.9 g) (p < 0.05). The 10-LDF diet reduced body fat compared to 5-CEL (p < 0.01). In conclusion, DF extracted from linseed reduced apparent energy and fat digestibility and resulted in restriction of body weight gain in growing rats. Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)
Show Figures

Figure 1

549 KiB  
Article
Impact of Short Term Consumption of Diets High in Either Non-Starch Polysaccharides or Resistant Starch in Comparison with Moderate Weight Loss on Indices of Insulin Sensitivity in Subjects with Metabolic Syndrome
by Gerald E. Lobley, Grietje Holtrop, David M. Bremner, A. Graham Calder, Eric Milne and Alexandra M. Johnstone
Nutrients 2013, 5(6), 2144-2172; https://doi.org/10.3390/nu5062144 - 10 Jun 2013
Cited by 32 | Viewed by 14588
Abstract
This study investigated if additional non-starch polysaccharide (NSP) or resistant starch (RS), above that currently recommended, leads to better improvement in insulin sensitivity (IS) than observed with modest weight loss (WL). Obese male volunteers (n = 14) were given an energy-maintenance (M) [...] Read more.
This study investigated if additional non-starch polysaccharide (NSP) or resistant starch (RS), above that currently recommended, leads to better improvement in insulin sensitivity (IS) than observed with modest weight loss (WL). Obese male volunteers (n = 14) were given an energy-maintenance (M) diet containing 27 g NSP and 5 g RS daily for one week. They then received, in a cross-over design, energy-maintenance intakes of either an NSP-enriched diet (42 g NSP, 2.5 g RS) or an RS-enriched diet (16 g NSP, 25 g RS), each for three weeks. Finally, a high protein (30% calories) WL diet was provided at 8 MJ/day for three weeks. During each dietary intervention, endogenous glucose production (EGP) and IS were assessed. Fasting glycaemia was unaltered by diet, but plasma insulin and C-peptide both decreased with the WL diet (p < 0.001), as did EGP (−11%, p = 0.006). Homeostatis model assessment of insulin resistance improved following both WL (p < 0.001) and RS (p < 0.05) diets. Peripheral tissue IS improved only with WL (57%–83%, p < 0.005). Inclusion of additional RS or NSP above amounts currently recommended resulted in little or no improvement in glycaemic control, whereas moderate WL (approximately 3 kg fat) improved IS. Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)
Show Figures

Graphical abstract

268 KiB  
Article
The Role of Viscosity and Fermentability of Dietary Fibers on Satiety- and Adiposity-Related Hormones in Rats
by Natalia Schroeder, Len F. Marquart and Daniel D. Gallaher
Nutrients 2013, 5(6), 2093-2113; https://doi.org/10.3390/nu5062093 - 07 Jun 2013
Cited by 40 | Viewed by 10693
Abstract
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and [...] Read more.
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination. Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)
Show Figures

Figure 1

579 KiB  
Article
Short Term (14 Days) Consumption of Insoluble Wheat Bran Fibre-Containing Breakfast Cereals Improves Subjective Digestive Feelings, General Wellbeing and Bowel Function in a Dose Dependent Manner
by Clare L. Lawton, Jenny Walton, Alexa Hoyland, Elaine Howarth, Peter Allan, David Chesters and Louise Dye
Nutrients 2013, 5(4), 1436-1455; https://doi.org/10.3390/nu5041436 - 22 Apr 2013
Cited by 24 | Viewed by 23080
Abstract
This study investigated whether increasing insoluble (predominantly wheat bran) fibre over 14 days improves subjective digestive feelings, general wellbeing and bowel function. A single centre, multi-site, open, within subjects design with a 14 day non-intervention (baseline) monitoring period followed by a 14 day [...] Read more.
This study investigated whether increasing insoluble (predominantly wheat bran) fibre over 14 days improves subjective digestive feelings, general wellbeing and bowel function. A single centre, multi-site, open, within subjects design with a 14 day non-intervention (baseline) monitoring period followed by a 14 day fibre consumption (intervention) period was performed. 153 low fibre consumers (<15 g/day AOAC 985.29) completed a daily symptom diary for 14 days after which they consumed one bowl of ready-to-eat breakfast cereal containing at least 5.4 g fibre (3.5 g from wheat bran) for 14 days and completed a daily symptom diary. Significant improvements were demonstrated in subjective perception of bowel function (e.g., ease of defecation) and digestive feelings (bloating, constipation, feeling sluggish and digestive discomfort). Significant improvements were also found in subjective perception of general wellbeing (feeling less fat, more mentally alert, slim, happy and energetic whilst experiencing less stress, mental and physical tiredness, difficulty concentrating and fewer headaches). In general, improvements in study outcomes increased with increasing cereal/fibre consumption. However, consuming an additional minimum 5.4 g of fibre (3.5 g wheat bran) per day was shown to deliver measurable and significant benefits for digestive health, comfort and wellbeing. Encouraging consumption of relatively small amounts of wheat bran could also provide an effective method of increasing overall fibre consumption. Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)
Show Figures

Figure 1

409 KiB  
Article
Soluble Fiber Dextrin and Soluble Corn Fiber Supplementation Modify Indices of Health in Cecum and Colon of Sprague-Dawley Rats
by Brenda K. Knapp, Laura L. Bauer, Kelly S. Swanson, Kelly A. Tappenden, George C. Fahey, Jr. and Maria R. C. De Godoy
Nutrients 2013, 5(2), 396-410; https://doi.org/10.3390/nu5020396 - 04 Feb 2013
Cited by 34 | Viewed by 9833
Abstract
The objective of this study was to evaluate health outcomes resulting from dietary supplementation of novel, low-digestible carbohydrates in the cecum and colon of Sprague-Dawley rats randomly assigned to one of four treatment groups for 21 days: 5% cellulose (Control), Pectin, soluble fiber [...] Read more.
The objective of this study was to evaluate health outcomes resulting from dietary supplementation of novel, low-digestible carbohydrates in the cecum and colon of Sprague-Dawley rats randomly assigned to one of four treatment groups for 21 days: 5% cellulose (Control), Pectin, soluble fiber dextrin (SFD), or soluble corn fiber (SCF). Rats fed Pectin had a higher average daily food intake, but no differences in final body weights or rates of weight gain among treatments were observed. No differences were observed in total short-chain fatty acid (SCFA) or branched-chain fatty acid (BCFA) concentrations in the cecum and colon of rats fed either SFD or SCF. The SFD and SCF treatments increased cecal propionate and decreased butyrate concentrations compared to Control or Pectin. Pectin resulted in increased BCFA in the cecum and colon. Supplementation of SFD and SCF had no effect on cecal microbial populations compared to Control. Consumption of SFD and SCF increased total and empty cecal weight but not colon weight. Gut histomorphology was positively affected by SFD and SCF. Increased crypt depth, goblet cell numbers, and acidic mucin were observed in both the cecum and colon of rats supplemented with SFD, SCF, and Pectin. These novel, low-digestible carbohydrates appear to be beneficial in modulating indices of hindgut morphology when supplemented in the diet of the rat. Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)

Review

Jump to: Research

428 KiB  
Review
Alternative Dietary Fiber Sources in Companion Animal Nutrition
by Maria R. C. De Godoy, Katherine R. Kerr and George C. Fahey, Jr.
Nutrients 2013, 5(8), 3099-3117; https://doi.org/10.3390/nu5083099 - 06 Aug 2013
Cited by 78 | Viewed by 18280
Abstract
The US has a pet population of approximately 70 million dogs and 74 million cats. Humans have developed a strong emotional bond with companion animals. As a consequence, pet owners seek ways to improve health, quality of life and longevity of their pets. [...] Read more.
The US has a pet population of approximately 70 million dogs and 74 million cats. Humans have developed a strong emotional bond with companion animals. As a consequence, pet owners seek ways to improve health, quality of life and longevity of their pets. Advances in canine and feline nutrition have contributed to improved longevity and well-being. Dietary fibers have gained renewed interest in the pet food industry, due to their important role in affecting laxation and stool quality. More recently, because of increased awareness of the beneficial effects of dietary fibers in health, as well as the popularity of functional foods and holistic and natural diets, alternative and novel carbohydrates have become widespread in human and pet nutrition. Fiber sources from cereal grains, whole grains and fruits have received increasing attention by the pet food industry and pet owners. While limited scientific information is available on the nutritional and nutraceutical properties of alternative fiber sources, studies indicate that corn fiber is an efficacious fiber source for pets, showing no detrimental effects on palatability or nutrient digestibility, while lowering the glycemic response in adult dogs. Fruit fiber and pomaces have good water-binding properties, which may be advantageous in wet pet food production, where a greater water content is required, along with low water activity and a firm texture of the final product. Rice bran is a palatable fiber source for dogs and may be an economical alternative to prebiotic supplementation of pet foods. However, it increases the dietary requirement of taurine in cats. Barley up to 40% in a dry extruded diet is well tolerated by adult dogs. In addition, consumption of complex carbohydrates has shown a protective effect on cardiovascular disease and oxidative stress. Alternative fiber sources are suitable ingredients for pet foods. They have been shown to be nutritionally adequate and to have potential nutraceutical properties. Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)
676 KiB  
Review
Peculiarities of Enhancing Resistant Starch in Ruminants Using Chemical Methods: Opportunities and Challenges
by Kathrin Deckardt, Annabella Khol-Parisini and Qendrim Zebeli
Nutrients 2013, 5(6), 1970-1988; https://doi.org/10.3390/nu5061970 - 04 Jun 2013
Cited by 45 | Viewed by 13466
Abstract
High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen [...] Read more.
High-producing ruminants are fed high amounts of cereal grains, at the expense of dietary fiber, to meet their high energy demands. Grains consist mainly of starch, which is easily degraded in the rumen by microbial glycosidases, providing energy for rapid growth of rumen microbes and short-chain fatty acids (SCFA) as the main energy source for the host. Yet, low dietary fiber contents and the rapid accumulation of SCFA lead to rumen disorders in cattle. The chemical processing of grains has become increasingly important to confer their starch resistances against rumen microbial glycosidases, hence generating ruminally resistant starch (RRS). In ruminants, unlike monogastric species, the strategy of enhancing resistant starch is useful, not only in lowering the amount of carbohydrate substrates available for digestion in the upper gut sections, but also in enhancing the net hepatic glucose supply, which can be utilized by the host more efficiently than the hepatic gluconeogenesis of SCFA. The use of chemical methods to enhance the RRS of grains and the feeding of RRS face challenges in the practice; therefore, the present article attempts to summarize the most important achievements in the chemical processing methods used to generate RRS, and review advantages and challenges of feeding RRS to ruminants Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)
Show Figures

Graphical abstract

793 KiB  
Review
Major Cereal Grain Fibers and Psyllium in Relation to Cardiovascular Health
by Adam M. Bernstein, Brigid Titgemeier, Kristin Kirkpatrick, Mladen Golubic and Michael F. Roizen
Nutrients 2013, 5(5), 1471-1487; https://doi.org/10.3390/nu5051471 - 29 Apr 2013
Cited by 81 | Viewed by 25228
Abstract
Numerous studies reveal the cardiovascular benefits of consuming dietary fiber and, especially, cereal fiber. Cereal fiber is associated with cardiovascular risk reduction through multiple mechanisms and consuming a variety of cereal fiber sources offers health benefits specific to the source. Certain cereal fibers [...] Read more.
Numerous studies reveal the cardiovascular benefits of consuming dietary fiber and, especially, cereal fiber. Cereal fiber is associated with cardiovascular risk reduction through multiple mechanisms and consuming a variety of cereal fiber sources offers health benefits specific to the source. Certain cereal fibers have been studied more extensively than others and provide greater support for their incorporation into a healthful diet. β-glucan from oats or barley, or a combination of whole oats and barley, and soluble fiber from psyllium reduces the risk of coronary heart disease; inulin-type fructans added to foods and beverages may modestly decrease serum triacylglycerols; arabinoxylan and resistant starch may improve glycemic control. Individuals with low cereal fiber intake should increase their intake of whole grains in order to receive the benefits of whole grains in addition to fiber. For those adjusting to the texture and palatability of whole grains, turning to added-fiber products rich in β-glucan and psyllium may allow them to reach their fiber goals without increasing caloric intake. Full article
(This article belongs to the Special Issue Dietary Fiber and Nutrition)
Show Figures

Figure 1

Back to TopTop