Pharmacological Activities of Schiff Bases and/or Their Metal Complexes

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmacology".

Deadline for manuscript submissions: closed (25 January 2024) | Viewed by 8332

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
Interests: synthesis and structural characterization of coordination compounds; interaction with DNA; DNA cleavage; interaction with serum albumins; antioxidant properties; coordination complexes with antimicrobial properties

Special Issue Information

Dear Colleagues,

It is well known that Schiff bases were first discovered by the German chemist noble prize winner Hugo Schiff and today are among the most widely used organic compounds. They can be found in nature and are also synthesized in the laboratory, and they are characterized by the presence of a double-bond-linking carbon and nitrogen atoms. Schiff bases are considered privileged ligands since they can coordinate strongly to metal ions and have the ability to form very stable complexes with transition metals.

Schiff bases as well as their metal complexes present a great variety of biological activities. It has been found that they may possess antibacterial, antimicrobial, antifungal, antibiofilm, antimalarial, antioxidant, antiproliferative, anti-inflammatory, antiviral, anti-analgetic, or antipyretic properties. The also find use in other potential industrial applications, for example, in sensors and photovoltaic materials.

In this Special Issue, our goal is to gather experts in the field of Schiff bases and to gain more insight into the recent pharmacological aspects of these fascinating complexes, as well as of their coordination compounds with metal ions. 

Dr. Ariadni Zianna
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Schiff bases
  • metal complexes
  • pharmacological activity
  • biological applications
  • drug design

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 4742 KiB  
Article
Copper(II) Chelates of Schiff Bases Enriched with Aliphatic Fragments: Synthesis, Crystal Structure, In Silico Studies of ADMET Properties and a Potency against a Series of SARS-CoV-2 Proteins
by Elizaveta V. Panova, Julia K. Voronina and Damir A. Safin
Pharmaceuticals 2023, 16(2), 286; https://doi.org/10.3390/ph16020286 - 14 Feb 2023
Cited by 3 | Viewed by 1681
Abstract
We report two complexes [Cu(LI)2] (1) and [Cu(LII)2] (2) (HLI = N-cyclohexyl-3-methoxysalicylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine). The ligands in both complexes are trans-1,5-N,O-coordinated, yielding a square planar [...] Read more.
We report two complexes [Cu(LI)2] (1) and [Cu(LII)2] (2) (HLI = N-cyclohexyl-3-methoxysalicylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine). The ligands in both complexes are trans-1,5-N,O-coordinated, yielding a square planar CuN2O2 coordination core. The molecule of 1 is planar with two cyclohexyl groups oriented to the opposite sites of the planar part of a molecule, while the molecule of 2 is significantly bent with two cyclohexyl groups oriented to the same convex site of a molecule. It was established that both complexes in MeOH absorb in the UV region due to intraligand transitions and LMCT. Furthermore, the UV-vis spectra of both complexes revealed two low intense shoulders in the visible region at about 460 and 520 nm, which were attributed to d–d transitions. Both complexes were predicted to belong to a fourth class of toxicity with the negative BBB property and positive gastrointestinal absorption property. According to the molecular docking analysis results, both complexes are active against all the applied SARS-CoV-2 proteins with the best binding affinity with Nsp 14 (N7-MTase), PLpro and Mpro. The obtained docking scores of complexes are either comparable to or even higher than those of the initial ligands. Complex 1 was found to be more efficient upon interaction with the applied proteins in comparison to complex 2. Ligand efficiency scores for the initial ligands, 1 and 2 were also revealed. Full article
Show Figures

Figure 1

22 pages, 5590 KiB  
Article
Novel Benzimidazole Derived Imine Ligand and Its Co(III) and Cu(II) Complexes as Anticancer Agents: Chemical Synthesis, DFT Studies, In Vitro and In Vivo Biological Investigations
by Prakasha G, H. D. Revanasiddappa, Jayalakshmi B, Prabhakar B. T, Chandan Shivamallu, Prashant M. Viswanath, Raghu Ram Achar, Ekaterina Silina, Victor Stupin, Natalia Manturova, Ali A. Shati, Mohammad Y. Alfaifi, Serag Eldin I. Elbehairi, Sanja J. Armaković, Stevan Armaković and Shiva Prasad Kollur
Pharmaceuticals 2023, 16(1), 125; https://doi.org/10.3390/ph16010125 - 13 Jan 2023
Cited by 6 | Viewed by 2431
Abstract
The emerging interest in the field of coordination chemistry and their biological applications has created a novel impact in the field of chemical biology. With this motivation, in this work we have synthesized a novel benzimidazole derived imine ligand, 2-((E)-((1H-benzo[d]-2-yl)methylimino)methyl)-4-fluorophenol (HBMF) [...] Read more.
The emerging interest in the field of coordination chemistry and their biological applications has created a novel impact in the field of chemical biology. With this motivation, in this work we have synthesized a novel benzimidazole derived imine ligand, 2-((E)-((1H-benzo[d]-2-yl)methylimino)methyl)-4-fluorophenol (HBMF) and its Co(III) and Cu(II) complexes. The metal complexes (C1C4) were synthesized in 2:1 (HBMF: metal ion) and 1:1:1 (HBMF: metal ion: 1,10-phen) ratios. Structural elucidations of all the synthesized compounds were performed using FT-IR, UV-Visible, NMR, Mass spectroscopy and elemental analysis techniques. A combination of first principles calculations and molecular dynamics simulations was applied to computationally investigate the structural, reactive, and spectroscopic properties of the newly synthesized HBMF ligand and its complexes with copper and cobalt metal ions. Quantum-mechanical calculations in this study were based on the density functional theory (DFT), while molecular dynamics (MD) simulations were based on the OPLS4 force field. The DFT calculations were used to obtain the reactive and spectroscopic properties of the ligand and its complexes, while molecular dynamics (MD) simulations were used to address the ligand’s reactivity with water. Further, the in vitro anti-proliferative activity of the compounds was tested against the A549, Ehrlich–Lettre ascites carcinoma (EAC), SIHA and NIH3T3 cell lines. The biological results depicted that the compound C4, with molecular formula C27H23Cl2CoFN5O3 exhibited profound anti-proliferative activity against the EAC cell line with a significant IC50 value of 10 µm when compared to its parent ligand and other remaining metal complexes under study. Various assays of hematological parameters (alkaline phosphate, creatinine, urea, RBC and WBC) were performed, and significant results were obtained from the experiments. Furthermore, the effect of C4 on neovascularization was evaluated by stimulating the angiogenesis with rVEGF165, which was compared with non-tumor models. The EAC cells were cultured in vivo and administrated with 50 and 75 mg/kg of two doses and tumor parameters were evaluated. Full article
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 7829 KiB  
Review
Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates
by Ivelina Tsacheva, Zornica Todorova, Denitsa Momekova, Georgi Momekov and Neli Koseva
Pharmaceuticals 2023, 16(7), 938; https://doi.org/10.3390/ph16070938 - 28 Jun 2023
Cited by 15 | Viewed by 3366
Abstract
This review paper is focused on the design of anthracene and furan-containing Schiff bases and their advanced properties as ligands in complex transition metal ions The paper also provides a brief overview on a variety of biological applications, namely, potent candidates with antibacterial [...] Read more.
This review paper is focused on the design of anthracene and furan-containing Schiff bases and their advanced properties as ligands in complex transition metal ions The paper also provides a brief overview on a variety of biological applications, namely, potent candidates with antibacterial and antifungal activity, antioxidant and chemosensing properties. These advantageous properties are enhanced upon metal complexing. The subject of the review has been extended with a brief discussion on reactivity of Schiff bases with hydrogen phosphonates and the preparation of low and high molecular phosphonates, as well as their application as pharmacological agents. This work will be of interest for scientists seeking new challenges in discovering advanced pharmacological active molecules gaining inspiration from the versatile families of imines and aminophosphonates. Full article
Show Figures

Figure 1

Back to TopTop