Nanoparticle-Based Drug Delivery Systems for the Treatment of Ocular Diseases

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 10 February 2025 | Viewed by 561

Special Issue Editor


E-Mail Website
Guest Editor
Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
Interests: nanoparticles; drug delivery; retinal degeneration; protein nanoparticles; nanomedicine

Special Issue Information

Dear Colleagues,

The eye itself is an organ that presents unfavourable anatomical and physiological barriers to drug delivery, particularly in the posterior segment. However, nanotechnology has been shown to overcome the challenges of ocular drug delivery, improving both efficacy and precision in the treatment of ocular diseases. These systems allow for the prolonged retention and better targeting of drugs to specific therapeutic sites and are increasingly overcoming the related barriers. In this work, we explore how different drug-loaded nanotechnology systems are characterised physicochemically, and we perform ex vivo and in vivo assays to improve therapeutic outcomes in ocular diseases and their treatment efficacy.

Prof. Dr. Daniela Alejandra Quinteros
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anterior segment
  • posterior segment
  • drug delivery systems
  • nanotechnology
  • ocular diseases
  • ocular barriers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2775 KiB  
Article
Neuroprotective Effect of Melatonin Loaded in Human Serum Albumin Nanoparticles Applied Subconjunctivally in a Retinal Degeneration Animal Model
by Sofia Mickaela Martinez, Ayelen Inda, Maximiliano Nicolás Ríos, Carolina del Valle Bessone, Abril Bruera Bossio, Mario Eduardo Guido, José Domingo Luna Pinto, Daniel Alberto Allemandi and Daniela Alejandra Quinteros
Pharmaceutics 2025, 17(1), 85; https://doi.org/10.3390/pharmaceutics17010085 - 10 Jan 2025
Viewed by 365
Abstract
Background/Objectives: Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, [...] Read more.
Background/Objectives: Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility. This study proposes the use of human serum albumin nanoparticles (Np-HSA) to enhance the delivery of Mel to the posterior segment of the eye and evaluates its neuroprotective and anti-apoptotic effects on the retina. Methods: A model of retinal degeneration was induced in New Zealand albino rabbits using cytotoxic and oxidative agents. Np-HSA-Mel nanoparticles were administered subconjunctivally, and cellular viability and retinal functionality were assessed using flow cytometry and pupillary light reflex (PLR). Histological and immunohistochemical studies, including the TUNEL assay, were performed to analyse cell survival and apoptotic index. Results: Np-HSA-Mel significantly preserved pupillary function and cell viability, demonstrating lower apoptosis compared to Mel solution and Np-HSA alone. Histologically, eyes treated with Np-HSA-Mel exhibited fewer structural alterations and greater cellular organisation. The TUNEL assay confirmed a significant reduction in the apoptotic index of retinal ganglion cells (RGCs) treated with Np-HSA-Mel. Conclusions: Np-HSA-Mel effectively overcame ocular barriers, achieving greater neuroprotective efficacy at the retinal level. These findings highlight the synergistic potential of albumin and Mel in treating neurodegenerative ocular diseases, opening new perspectives for future therapies. Full article
Show Figures

Graphical abstract

Back to TopTop