Nanocarriers and Delivery Systems for Next-Generation Nanomedicine Therapies

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 499

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Interests: nano drug delivery systems; nucleic acid delivery; controlled release systems; targeted drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanocarrier technology is leading the wave of innovation for the next generation of drug therapies. With the growing demand for precision medicine, the development of efficient, intelligent, diagnostic-integrated delivery systems is crucial to breaking through the bottleneck of conventional therapies. Currently, although nanocarriers (e.g., lipid nanoparticles, polymeric micelles, exosomes, and stimuli-responsive materials) show great potential for enhancing drug solubility, prolonging circulation time, and enhancing targeting, they still face challenges in delivery efficiency, biocompatibility, and scale-up in clinical translation. Especially in the cutting-edge fields of gene editing tools, biomolecules, and multi-drug co-delivery, innovative carrier designs are urgently needed to address the issues of poor in vivo stability, off-target effects, and immunogenicity. The aim of this Special Issue is to bring together the latest breakthrough research in nanomedicine delivery systems, covering the full chain of innovation from basic design to clinical translation. We invite submissions of reviews and original articles, which will be published as part of the Special Issue entitled "Nanocarriers and Delivery Systems for Next-Generation Nanomedicine Therapies", on topics including, but not limited to, the following: smart nanocarriers, multimodal synergistic delivery systems, targeted delivery and tumor microenvironment regulation, clinical translational challenges and scale-up production strategies, and novel carrier materials and characterization technologies.

We look forward to your outstanding contributions to drive the development of the next generation of nanomedicine therapeutics.

Prof. Dr. Wei Huang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocarriers
  • targeted delivery systems
  • stimuli-responsive materials
  • co-delivery systems
  • theranostic nanoplatforms
  • clinical translation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 8171 KB  
Article
Improving the Treatment of Brain Gliomas Through Small-Particle-Size Paclitaxel-Loaded Micelles with a High Safety Profile
by Bohan Chen, Liming Gong, Jing Feng, MongHsiu Song, Mingji Jin, Liqing Chen, Zhonggao Gao and Wei Huang
Pharmaceutics 2025, 17(8), 965; https://doi.org/10.3390/pharmaceutics17080965 - 25 Jul 2025
Viewed by 407
Abstract
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of [...] Read more.
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of this study was to develop a Solutol HS-15-based micellar nanoparticle (PSM) to enhance the brain glioma targeting of PTX and reduce toxicity. Methods: PSMs were prepared by solvent injection and characterised for particle size, encapsulation rate, haemolysis rate and in vitro release properties. A C6 in situ glioma mouse model was used to assess the brain targeting and anti-tumour effects of the PSM by in vivo imaging, tissue homogenate fluorescence analysis and bioluminescence monitoring. Meanwhile, its safety was evaluated by weight monitoring, serum biochemical indexes and histopathological analysis. Results: The particle size of PSMs was 13.45 ± 0.70 nm, with an encapsulation rate of 96.39%, and it demonstrated excellent cellular uptake. In tumour-bearing mice, PSMs significantly enhanced brain tumour targeting with a brain drug concentration 5.94 times higher than that of free PTX. Compared with Taxol, PSMs significantly inhibited tumour growth (terminal luminescence intensity <1 × 106 p/s/cm2/Sr) and did not cause significant liver or kidney toxicity or body weight loss. Conclusions: PSMs achieve an efficient accumulation of brain gliomas through passive targeting and EPR effects while significantly reducing the systemic toxicity of PTX. Its simple preparation process and excellent therapeutic efficacy support its use as a potential clinically translational candidate for glioma treatment. Full article
Show Figures

Figure 1

Back to TopTop