Advanced Pediatric Drug Formulation Strategies

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Physical Pharmacy and Formulation".

Deadline for manuscript submissions: 20 January 2025 | Viewed by 5830

Special Issue Editors


E-Mail Website
Guest Editor
Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
Interests: taste-masked medicinal formulations; taste assessment; paediatric formulations; veterinary formulations

E-Mail Website
Guest Editor
1. Pharmacy, School of Allied Health, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
2. Telethon Kids Institute, Perth Children's Hospital, 5 Hospital Ave, Nedlands, WA 6009, Australia
Interests: paediatric formulation; population pharmacokinetics; design of experiments

Special Issue Information

Dear Colleagues,

Regulatory, consumer and clinician advocacy for the development of age-appropriate medicines for the pediatric population has resulted in significant progress in the last decade. Strategies such as the application of peroral minitablets and microparticles are regarded as highly promising in offering dose flexibility and swallowability for young children. Several taste-masking platforms have also been developed for bitter-tasting drugs and have been clinically demonstrated to be more acceptable to the pediatric population than standard treatment options. More recently, advanced formulation strategies such as 3D printing and nanotechnology have emerged to address the medication needs of the diverse pediatric population.

The aim of this Special Issue of Pharmaceutics is to highlight new pediatric formulation strategies that address the issues of dose flexibility, swallowability, palatability, and the diverse physiological developmental stages encountered in the pediatric population. We invite researchers to publish their original research or review articles addressing novel taste-masking technology, 3D printing technology, nanotechnology, PK-informed personalized medicines, non-oral formulations, and AI-driven formulation strategies that are applied to the development of medicinal formulations for the pediatric population.

Prof. Dr. Lee-Yong Lim
Dr. Okhee Yoo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • paediatric/pediatric
  • taste masking
  • 3D printing
  • nanotechnology
  • PK-informed personalized medicines
  • non-oral pediatric formulations
  • AI-directed pediatric formulations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3366 KiB  
Article
The Design of Novel 3D-Printed, Moulded, and Oral Viscous Budesonide Formulations for Paediatrics: A Comparative Evaluation of Their Mucoadhesive Properties
by María Magariños-Triviño, Eduardo Díaz-Torres, Javier Suárez-González, Ana Santoveña-Estévez and José B. Fariña
Pharmaceutics 2024, 16(10), 1338; https://doi.org/10.3390/pharmaceutics16101338 - 18 Oct 2024
Viewed by 257
Abstract
Background/Objectives: Paediatric eosinophilic oesophagitis (EoE) treatment is challenging due to the limited number of age-appropriate formulations. This study aims to develop and evaluate oral viscous suspensions and solid formulations of budesonide (BUD), focusing on their in vitro mucoadhesive properties, to enhance drug delivery [...] Read more.
Background/Objectives: Paediatric eosinophilic oesophagitis (EoE) treatment is challenging due to the limited number of age-appropriate formulations. This study aims to develop and evaluate oral viscous suspensions and solid formulations of budesonide (BUD), focusing on their in vitro mucoadhesive properties, to enhance drug delivery and therapeutic outcomes in paediatric EoE. Methods: This study encompasses the development of oral viscous suspensions and orodispersible solid formulations (moulded tablets and 3D-printed dosage forms) containing BUD. The formulations underwent quality control tests as per the European Pharmacopoeia, chemical stability assessments, and an in vitro evaluation of their mucoadhesiveness properties. Results: A validated analytical method enabled accurate BUD quantification and efficient extraction, and all developed formulations demonstrated chemical stability for 30 days, meeting Ph. Eur. quality standards. Three-dimensional printing using SSE successfully produced 1 mg and 0.5 mg BUD printlets, complying with quality tests for conventional tablets. Formulations containing xanthan gum (L2-XG and P1-0.5-XG) exhibited superior mucoadhesive properties. L2-XG showed significantly higher mucoadhesion than L1-MC. Among the solid formulations, P1-0.5-XG demonstrated the highest mucoadhesive properties. Conclusions: This is the first study to develop solid oral dosage forms of BUD at a very low dose, specifically for paediatric use. The results highlight the potential of 3D printing for developing individualised orodispersible BUD formulations with improved bioadhesion for paediatric EoE treatment. The L2-XG formulation and the XG-containing printlets are the most promising formulations in terms of increasing contact time with the oesophageal mucosa, which could translate into improved therapeutic efficacy in this patient population. Full article
(This article belongs to the Special Issue Advanced Pediatric Drug Formulation Strategies)
Show Figures

Figure 1

18 pages, 2899 KiB  
Article
The Development of a Chocolate-Based Chewable Tablet of Prednisolone—Enhancing the Palatability of Steroids for Pediatric Use
by Okhee Yoo, Edith Tang, Md Lokman Hossain, Britta S. von Ungern-Sternberg, David Sommerfield, Chloe Heath, Neil Hauser, R. Nazim Khan, Cornelia Locher, Minh Nguyen and Lee Yong Lim
Pharmaceutics 2024, 16(8), 1099; https://doi.org/10.3390/pharmaceutics16081099 - 21 Aug 2024
Viewed by 1022
Abstract
Oral liquid prednisolone medications have poor acceptance among paediatric patients due to ineffective masking of the bitterness taste of prednisolone. This study aimed to develop a child-friendly prednisolone tablet using a patented chewable chocolate-based delivery system (CDS) previously applied successfully to mask the [...] Read more.
Oral liquid prednisolone medications have poor acceptance among paediatric patients due to ineffective masking of the bitterness taste of prednisolone. This study aimed to develop a child-friendly prednisolone tablet using a patented chewable chocolate-based delivery system (CDS) previously applied successfully to mask the bitterness tastes of midazolam and tramadol. Prednisolone sodium phosphate (PSP) and prednisolone base (PB) CDS tablets were prepared, and the manufacturing process was optimised using a design of experiments (DoE) approach. Stability was assessed by quantifying residual drug content via a validated HPLC assay. A pilot randomised crossover taste study involving 25 young adult volunteers evaluated taste-masking effectiveness against Redipred™, a commercial oral PSP liquid medicine. The results showed that the PSP CDS tablet was chemically stable following storage for three months at ambient temperature, while the PB CDS tablet was unstable. The optimised PSP CDS tablet, manufactured at 50 °C with a stirring time of 26 h, was found to release over 80% of its drug load within 20 min in 0.1 M HCl and had a significantly better mean taste score compared to Redipred™ (7.08 ± 2.40 vs. 5.60 ± 2.33, p = 0.03). Fifty six percent of the participants preferred the PSP CDS tablet. In conclusion, compared to Redipred™, the CDS technology provided a more effective taste masking of PSP, potentially offering a child-friendly prednisolone formulation with improved compliance, dosing accuracy, and storage stability. Full article
(This article belongs to the Special Issue Advanced Pediatric Drug Formulation Strategies)
Show Figures

Figure 1

17 pages, 9371 KiB  
Article
Commercialization of the Xalkori Pediatric Multiparticulate Product Using Quality-by-Design Principles
by Jeremy Bartlett, Natalie Culver, Xiang Zhang, Brett Waybrant, Hannah Sullivan and Logan Howell
Pharmaceutics 2024, 16(8), 1027; https://doi.org/10.3390/pharmaceutics16081027 - 1 Aug 2024
Viewed by 1000
Abstract
A pediatric dosage form for crizotinib (Xalkori) was commercialized using quality-by-design principles in a material-sparing fashion. The dosage form consists of spherical multiparticulates (microspheres or pellets) that are coated and encapsulated in capsules for opening. The crizotinib (Xalkori)-coated pellet product is approved in [...] Read more.
A pediatric dosage form for crizotinib (Xalkori) was commercialized using quality-by-design principles in a material-sparing fashion. The dosage form consists of spherical multiparticulates (microspheres or pellets) that are coated and encapsulated in capsules for opening. The crizotinib (Xalkori)-coated pellet product is approved in the US for pediatric patients 1 year of age and older and young adults with relapsed or refractory, systemic anaplastic large cell lymphoma (ALCL) and unresectable, recurrent, or refractory inflammatory myofibroblastic tumor (IMT) that is ALK-positive. The product is also approved in the US for adult patients with non-small cell lung cancer (NSCLC) who are unable to swallow intact capsules. The lipid multiparticulate is composed of a lipid matrix, a dissolution enhancer, and an active pharmaceutical ingredient (API). The API, which remains crystalline, is embedded within the microsphere at a 60% drug loading in the uncoated lipid multiparticulate to enable dose flexibility. The melt spray congealing technique using a rotary atomizer is used to manufacture the lipid multiparticulate. Following melt spray congealing, a barrier coating is applied via fluid bed coating. Due to their particle size and content uniformity, this dosage form provides the dosing flexibility and swallowability needed for the pediatric population. The required pediatric dose is achieved by opening the capsules and combining doses of different encapsulated dose strengths, followed by administration of the multiparticulates directly to the mouth. The encapsulation process was optimized through equipment modifications and by using a design of experiments approach to understand the operating space. A limited number of development batches produced using commercial-scale equipment were leveraged to design, understand, and verify the manufacturing process space. The quality by design and material-sparing approach taken to design the melt spray congeal and encapsulation manufacturing processes resulted in a pediatric product with exceptional content uniformity (a 95% confidence and 99% probability of passing USP <905> content uniformity testing for future batches). Full article
(This article belongs to the Special Issue Advanced Pediatric Drug Formulation Strategies)
Show Figures

Figure 1

21 pages, 3060 KiB  
Article
Palatability and Stability Studies to Optimize a Carvedilol Oral Liquid Formulation for Pediatric Use
by Blanca Chiclana-Rodríguez, Encarnacion Garcia-Montoya, Miquel Romero-Obon, Khadija Rouaz-El-Hajoui, Anna Nardi-Ricart, Marc Suñé-Pou, Josep M. Suñé-Negre and Pilar Pérez-Lozano
Pharmaceutics 2024, 16(1), 30; https://doi.org/10.3390/pharmaceutics16010030 - 25 Dec 2023
Cited by 1 | Viewed by 2111
Abstract
Carvedilol (CARV) is a blocker of α- and β- adrenergic receptors, used as an “off-label” treatment for cardiovascular diseases in pediatrics. Currently, there is no marketed pediatric-appropriate CARV liquid formulation, so its development is necessary. Palatability (appreciation of smell, taste, and aftertaste) is [...] Read more.
Carvedilol (CARV) is a blocker of α- and β- adrenergic receptors, used as an “off-label” treatment for cardiovascular diseases in pediatrics. Currently, there is no marketed pediatric-appropriate CARV liquid formulation, so its development is necessary. Palatability (appreciation of smell, taste, and aftertaste) is a key aspect to be considered during the development of pediatric formulations since only formulations with good palatability also have adequate acceptability in this population. Consequently, the aim of this research was to assess the palatability and acceptability of different CARV formulations using an in vivo taste assessment (ID Number PR103/22) in order to select the highest palatability-rated CARV formulation. The preparation of CARV formulations was based on a reference 1 mg/mL CARV solution, which contains malic acid as a solubilizing agent. Subsequently, sucralose and flavoring agents were added and mixed until complete dissolution to the corresponding formulations. Adult volunteers participated in this study and evaluated the taste and odor of various CARV formulations through a questionnaire and a sensory test. The mean palatability score, measured on a 10-point scale, increased from 1.60 for the unflavored control to 7.65 for the highest-rated flavored formulation. Moreover, the bitterness of the optimized CARV formulation was reduced from 66.67% to 17.86%, and the taste pleasantness was increased from 25/100 to 73/100. This optimized CARV formulation contains a sweetening agent, sucralose, in addition to two flavoring agents at appropriate concentrations for pediatrics. Furthermore, the physicochemical and microbiological stability of the optimized CARV formulation were evaluated for 6 months at 25, 30, and 40 °C, in addition to in-use stability for 15 days at 25 °C, whose results were confirmed. Thus, we successfully developed a palatable CARV liquid solution that contains excipients appropriate for pediatrics and is stable under the studied conditions. Full article
(This article belongs to the Special Issue Advanced Pediatric Drug Formulation Strategies)
Show Figures

Graphical abstract

Review

Jump to: Research

16 pages, 656 KiB  
Review
Real-World Evidence of 3D Printing of Personalised Paediatric Medicines and Evaluating Its Potential in Children with Cancer: A Scoping Review
by Munsur Ahmed, Stephen Tomlin, Catherine Tuleu and Sara Garfield
Pharmaceutics 2024, 16(9), 1212; https://doi.org/10.3390/pharmaceutics16091212 - 14 Sep 2024
Viewed by 867
Abstract
Personalised medicine, facilitated by advancements like 3D printing, may offer promise in oncology. This scoping review aims to explore the applicability of 3D printing for personalised pharmaceutical dosage forms in paediatric cancer care, focusing on treatment outcomes and patient experiences. Following the Joanna [...] Read more.
Personalised medicine, facilitated by advancements like 3D printing, may offer promise in oncology. This scoping review aims to explore the applicability of 3D printing for personalised pharmaceutical dosage forms in paediatric cancer care, focusing on treatment outcomes and patient experiences. Following the Joanna Briggs Institute (JBI) methodology, a comprehensive search strategy was implemented to identify the relevant literature across databases including PubMed, Embase, and Web of Science. Three independent reviewers conducted study selection and data extraction, focusing on studies involving paediatric patients under 18 years old and pharmaceutical dosage forms manufactured using 3D printing technology. From 2752 records screened, only six studies met the inclusion criteria, none of which specifically targeted paediatric cancer patients. These studies examined aspects of acceptability, including swallowability, taste, and feasibility of 3D-printed formulations for children. While the studies demonstrated the potential benefits of 3D printing in paediatric medication, particularly in personalised dosing, there is a notable lack of evidence addressing its acceptability in paediatric cancer patients. Further interdisciplinary collaborative research is needed in this area to fully assess preferences and acceptability among children with cancer and their parents or caregivers. Full article
(This article belongs to the Special Issue Advanced Pediatric Drug Formulation Strategies)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Numerical modeling of microparticle inhalation in a realistic mouth-throat airway with pediatric tonsil hypertrophy: A virtual comparative analysis between pre- and post-operative models
Author: Yang
Highlights: •This study numerically investigates the impact of tonsillar hypertrophy-induced oropharyngeal airway obstruction on the transport and deposition of inhaled corticosteroids in the airways. •For the first time, a study was conducted on the establishment of pre- and post-operative mouth–throat airway models by virtual surgery •After removing oropharyngeal obstruction, a significant reduction in airway resistance was observed.

Back to TopTop