A Commemorative Issue in Honor of Professor Jose M. Kenny: Advances in Polymer Composites and Nanocomposites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Innovation of Polymer Science and Technology".

Deadline for manuscript submissions: 30 November 2024 | Viewed by 10732

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Polymer Science and Technology (ICTP), CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain
Interests: processing and characterization of composite materials and nanocomposites; evaluation of structure-properties relationships in composite materials; study of elastomer compounds
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Institute of Polymer Science and Technology (ICTP), CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain
Interests: materials science; nanomaterials; polymer science; composites and nanocomposites; smart materials and stimuli-responsive polymers; shape memory and multi-responsive polymers; multifunctional polymers; biodegradable and biobased polymers; 3D printing; reuse and recycling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Civil and Environment Engineering, University of Perugia, UdR INSTM Strada di Pentima, 4-05100 Terni, Italy
Interests: material science and technology; polymers technology; composite materials science and technology; nanostructured materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue “Advances in Polymer composites and Nanocomposites” was born as a commemorative Special Issue in honor of Professor José M. Kenny and his recent retirement from the academic world, being based on subjects relevant to his scientific career and dedicated to scientific research and industrial developments related to materials science and technology, embracing, in particular, the world of polymers, composites and the progress on polymer nanotechnologies.

Prof. José Kenny is Full Professor of Materials Science and Technology at the Department of Civil and Environmental Engineering of the University of Perugia in Terni, Italy. He is also the President of the Board of the European Centre for Nanostructured Polymers.

Prof. Kenny earned his PhD at the University of the South in Argentina, and since 1993, he has worked at the University of Perugia, where he formed and coordinated the Laboratory of Materials Science and Technology. His main areas of research are the processing of polymers, composites and nanocomposites for applications in several advanced sectors: aerospace, automotive, biomedicine, food packaging, alternative energy and building. Moreover, in recent years, the research of Prof. Kenny has mainly been devoted to biopolymers (bio-based and biodegradable), recycling (circular economy) and the environmental impacts of polymer-based materials.

In more than 35 years of academic work, Prof. Kenny has authored more than 680 scientific publications in indexed international journals (Scopus h=100) related to the processing, characterization and applications of polymers, composites and nanocomposites, achieving more than 35,000 citations. Moreover, Prof. Kenny is a member of the editorial boards of several international scientific journals in the field of polymers. Prof. Kenny has coordinated numerous Italian and international scientific, technological and education projects and been a visiting professor at several European and American universities and research centers. He was President of the European Society for Advanced Materials and Process Engineering (SAMPE) in the period 2001-2002, and he received the SAMPE Fellow Award in 2011 and the RAICES Award in 2012, granted by the Argentine Ministry of Science and Technology. During the period 2015-2021, Prof. Kenny was appointed as Scientific Attaché at the Italian Embassy in Argentina.

Nowadays, paying deep attention to the future of polymer-based materials is required, not only from a functional point of view but also by taking into acocunt their potential end-of-life state and environmental impacts. Growing interest in bio-polymers, both bio-based and biodegradable polymers, is being promoted, while the recycling of aspects of polymeric materials is becoming very relevant from industrial and socio-economic points of view.

Therefore, with this Special Issue, we want to present a general vision of the polymeric world, focusing attention on polymers, composites, nano-composites, nanoparticles, elastomers, bio-based and biodegradable polymers, advanced materials, smart and functional materials, structure–properties relationships and advances in processing and characterization techniques.

Prof. Dr. Miguel Ángel López Manchado
Dr. Laura Peponi
Prof. Dr. Luigi Torre
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • composites
  • nanocomposites
  • nanoparticles
  • polymeric blends
  • processing
  • recycling
  • advance materials
  • smart materials
  • functional polymers
  • biodegradable polymers
  • bio-based polymers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 3107 KiB  
Article
Sulphur Copolymers with Pyrrole Compounds as Crosslinking Agents of Elastomer Composites for High-Performance Tyres
by Simone Naddeo, Vincenzina Barbera and Maurizio Galimberti
Polymers 2024, 16(19), 2802; https://doi.org/10.3390/polym16192802 - 3 Oct 2024
Viewed by 386
Abstract
Driving a car at extreme speeds, road holding, and sustainability do not go together well. Formula 1 racing is exciting but is not an example of sustainability. The aim of this work was to use materials, suitable for the treads of high-performance racing [...] Read more.
Driving a car at extreme speeds, road holding, and sustainability do not go together well. Formula 1 racing is exciting but is not an example of sustainability. The aim of this work was to use materials, suitable for the treads of high-performance racing tyres, that can favour both high performance and sustainability. In particular, the objective was to achieve high dynamic rigidity at high temperatures (>100 °C) and a stable crosslinking network. A copolymer from an industrial waste such as sulphur and a comonomer from a circular biosourced material were used as the crosslinking agent of an elastomer composite based on poly(styrene-co-butadiene) from solution anionic polymerization and a carbon black with a high surface area. The biosourced circular material was 1,6-bis(2,5-dimethyl-1H-pyrrol-1-yl)hexane (HMDP), the di-pyrrole derivative of hexamethylenediamine. Two poly(S-co-HMDP) copolymers, with different S/HMDP ratios (6 and 8.9, Copolymer 1 and Copolymer 2) were carefully characterized by means of 1H-, 13C-, 2D1H-1H-COSY and 2D 1H-13C HSQC NMR. The comparison of the spectra highlighted the substitution with sulphur of the β-position of the pyrrole ring: mono-substitution largely prevailed in Copolymer 1 and also bi-substitution in Copolymer 2. The copolymers were used as additives in the vulcanization system. Compared with a reference composite, they allowed us to achieve more efficient vulcanization, a higher density of the crosslinking network, higher dynamic rigidity, better ultimate tensile properties, and better stability of the crosslinking network at high temperatures. Compared with a traditional oil-based crosslinking agent for elastomer composites with high rigidity and a stable structure at high temperatures, such as the perthiocarbamate 6-((dibenzylcarbamothioyl)disulfaneyl)hexyl 1,3-diphenylpropane-2-sulfinodithioate, the poly(S-co-HMDP) copolymers led to higher dynamic rigidity and better ultimate tensile properties. These improvements occurring simultaneously are definitely unusual. This work paves the way for the upcycling of circular materials in a large-scale application such as in tyres. Full article
Show Figures

Figure 1

16 pages, 1820 KiB  
Article
Critical Cooling Rate of Fast-Crystallizing Polyesters: The Example of Poly(alkylene trans-1,4-cyclohexanedicarboxylate)
by Kylian Hallavant, Michelina Soccio, Giulia Guidotti, Nadia Lotti, Antonella Esposito and Allisson Saiter-Fourcin
Polymers 2024, 16(19), 2792; https://doi.org/10.3390/polym16192792 - 1 Oct 2024
Viewed by 478
Abstract
Controlling the cooling rate experienced by a material during a manufacturing process is a challenge and a major issue. Industrial processing techniques are very diverse and may involve a whole range of cooling rates, which are sometimes extremely high for small and/or thin [...] Read more.
Controlling the cooling rate experienced by a material during a manufacturing process is a challenge and a major issue. Industrial processing techniques are very diverse and may involve a whole range of cooling rates, which are sometimes extremely high for small and/or thin manufactured parts. For polymers, the cooling rate has consequences on both the microstructure and the time-dependent properties. The common cooling rates associated with conventional calorimetric measurements are generally limited to a few tens of degrees per minute. This work combines several calorimetric techniques (DSC, modulated-temperature DSC, stochastically-modulated DSC and Fast Scanning Calorimetry) to estimate the critical cooling rate required to melt-quench fast-crystallizing polyesters to their fully amorphous state, based on the example of a series of poly(alkylene trans-1,4-cyclohexanedicarboxylate) (PCHs) with a number of methylene groups in the main structure of the repeating unit nCH2 varying from 3 to 6. The even-numbered ones require faster cooling rates (about 3000 K s−1 for nCH2 = 4, between 500 and 1000 K s−1 for nCH2 = 6) compared to the odd-numbered ones (between 50 K min−1 and 100 K s−1 for nCH2 = 3, between 10 and 30 K min−1 for nCH2 = 5). Full article
Show Figures

Graphical abstract

26 pages, 13753 KiB  
Article
Influence of Twin Screw Extrusion Conditions on MWCNT Length and Dispersion and Resulting Electrical and Mechanical Properties of Polycarbonate Composites
by Petra Pötschke, Tobias Villmow, Beate Krause and Bernd Kretzschmar
Polymers 2024, 16(19), 2694; https://doi.org/10.3390/polym16192694 - 24 Sep 2024
Viewed by 547
Abstract
The processing conditions were varied during the production of polycarbonate-based composites with the multiwalled carbon nanotubes (MWCNTs) Baytubes® C150 P (Bayer MaterialScience AG, Leverkusen, Germany), by melt mixing with an extruder on a laboratory scale. These included the screw design, rotation speed, [...] Read more.
The processing conditions were varied during the production of polycarbonate-based composites with the multiwalled carbon nanotubes (MWCNTs) Baytubes® C150 P (Bayer MaterialScience AG, Leverkusen, Germany), by melt mixing with an extruder on a laboratory scale. These included the screw design, rotation speed, throughput, feeding position and MWCNT content. Particular attention was paid to the shortening of the MWCNT length as a function of the conditions mentioned. It was found that there is a correlation between the applied specific mechanical energy (SME) during the melt mixing process and MWCNT dispersion, which was quantified by the agglomerate area ratio of the non-dispersed nanotubes based on optical microscopic analysis. The higher the SME value, the lower this ratio, which indicates better dispersion. Above an SME value of about 0.4 kWh/kg, no further improvement in dispersion was achieved. The MWCNT length, as measured by the quantitative analysis of TEM images of the MWCNTs dissolved from the composites, decreased with the SME value down to values of 44% of the original MWCNT length. At a constant loading of 3 wt.%, the tensile strength and tensile modulus were almost independent of the SME, while the elongation at break and notched impact strength showed an increasing trend. The variation in the feeding position showed that feeding the MWCNTs into a side feeder led to slightly better electrical and mechanical properties for both types of MWCNTs studied (Baytubes® C150 P and Nanocyl™ NC7000 (Nanocyl S.A., Sambreville, Belgium)). However, feeding into the hopper led to better CNT dispersion with Baytubes® C150 P, while this was the case with Nanocyl™ NC7000 when feeding into the side feeder. The screw profile had an influence on the dispersion, the MWCNT length and the electrical resistance, but only to a small extent. Distributive screws led to a greater shortening of the MWCNT length than dispersive screws. By varying the MWCNT content, it was shown that a greater MWCNT shortening occurred at higher loadings. Two-stage masterbatch dilution leads to stronger shortening than composite production with direct MWCNT incorporation. Full article
Show Figures

Graphical abstract

21 pages, 5073 KiB  
Article
Effect of Different Porous Size of Porous Inorganic Fillers on the Encapsulation of Rosemary Essential Oil for PLA-Based Active Packaging
by Raúl Cerdá-Gandia, Ángel Agüero, Marina Patricia Arrieta and Octavio Fenollar
Polymers 2024, 16(18), 2632; https://doi.org/10.3390/polym16182632 - 18 Sep 2024
Viewed by 637
Abstract
Essential oils are interesting active additives for packaging manufacturing as they can provide the final material with active functionalities. However, they are frequently volatile compounds and can be degraded during plastic processing. In this work Rosmarinus officinalis (RO) essential oil was encapsulated into [...] Read more.
Essential oils are interesting active additives for packaging manufacturing as they can provide the final material with active functionalities. However, they are frequently volatile compounds and can be degraded during plastic processing. In this work Rosmarinus officinalis (RO) essential oil was encapsulated into Diatomaceous earth (DE) microparticles and into Halloysite nanotubes (HNTs) and further used to produce eco-friendly active packaging based on polylactic acid (PLA). PLA-based composites and nanocoposites films based on PLA reinforced with DE + RO and HNTs + RO, respectively, were developed by melt extrusion followed by cast-film, simulating the industrial processing conditions. As these materials are intended as active food packaging films, the obtained materials were fully characterized in terms of their mechanical, thermal and structural properties, while migration of antioxidant RO was also assessed as well as the compostability at laboratory scale level. Both DE and HNTs were able to protect the Rosmarinus officinalis (RO) from thermal degradation during processing, allowing to obtain films with antioxidant properties as demonstrated by the antioxidant assays after the materials were exposed for 10 days to a fatty food simulant. The results showed that incorporating Rosmarinus officinalis encapsulated in either DE or HNTs and the good dispersion of such particles into the PLA matrix strengthened its mechanical performance and sped up the disintegration under composting conditions of PLA, while allowing to obtain films with antioxidant properties of interest as antioxidant active food packaging materials. Full article
Show Figures

Figure 1

11 pages, 1559 KiB  
Article
Development of Ultraviolet-Shielding Bamboo/Silk Fibroin Hybrid Films with Good Mechanical Properties: A Proof Study on Human Keratinocyte Cells
by Silvia Bittolo Bon, Valeria Libera, Maria Rachele Ceccarini, Rocco Malaspina, Michela Codini and Luca Valentini
Polymers 2024, 16(16), 2244; https://doi.org/10.3390/polym16162244 - 7 Aug 2024
Viewed by 863
Abstract
In this study, we report the preparation and characterization of water-stable films with UV-shielding and good mechanical properties, exploiting the synergistic effect of regenerated silk fibroin and bamboo-derived cellulose. Silk fibroin (SF)/bamboo (B) hybrid films are achieved by solubilizing both silk and bamboo [...] Read more.
In this study, we report the preparation and characterization of water-stable films with UV-shielding and good mechanical properties, exploiting the synergistic effect of regenerated silk fibroin and bamboo-derived cellulose. Silk fibroin (SF)/bamboo (B) hybrid films are achieved by solubilizing both silk and bamboo fibers in formic acid with added CaCl2. Infrared spectroscopy indicates that SF, when combined with bamboo, undergoes a conformational transition, providing evidence of an increase in SF crystallinity. Exploiting the intrinsic absorption of SF in the ultraviolet region, UV–Vis spectroscopy was used to assess the glass transition temperature (Tg) of SF/B films, showing a decrease in Tg by increasing the SF content. The addition of 10 wt% SF to the B matrix improved the elastic modulus by about 10% while conserving the strain at break with respect to the neat B films, increasing the UV shielding properties, while water absorption suggested the material’s hydrophilic and swelling capacity even after one month. The hybrid films showed, under solar irradiation, a photoprotective behavior on keratinocyte human cells by increasing cellular viability. These findings may find potential applications in functional fabrics. Full article
Show Figures

Figure 1

12 pages, 20461 KiB  
Article
Composites Based on Eucalyptus Nitens Leaves and Natural Rubber as a Valuable Alternative for the Development of Elastomeric Materials with Low Microbiological Impact
by Héctor Aguilar-Bolados, Natacha Rosales-Charlin, Claudia Pérez-Manríquez, Solange Torres-Galan, Mohamed Dahrouch, Raquel Verdejo, Marianella Hernández Santana and Jose Becerra
Polymers 2024, 16(15), 2215; https://doi.org/10.3390/polym16152215 - 3 Aug 2024
Viewed by 904
Abstract
The forest industry produces several low-value by-products, such as bark, sawdust, limbs, and leaves, that are not ultimately disposed of and remain in the forests and sawmill facilities. Among these by-products are leaves, which contain not only cellulose fibers and lignin but also [...] Read more.
The forest industry produces several low-value by-products, such as bark, sawdust, limbs, and leaves, that are not ultimately disposed of and remain in the forests and sawmill facilities. Among these by-products are leaves, which contain not only cellulose fibers and lignin but also essential oils such as terpenes. These are biosynthesized in a similar way as cis-1,4-polyisoprene. In this context, this work evaluates the use of screened and unscreened dried Eucalyptus nitens leaves in natural rubber. Among the most relevant results of this work is a significant increase in mechanical properties, such as tensile strength and elongation at break, reaching values of 9.45 MPa and 649% of tensile strength and elongation at break, respectively, for a sample of natural rubber containing sieved dried leaves of Eucalyptus nitens. In addition, it is observed that the content of this vegetable filler allows for inhibiting the antibacterial effect of vulcanized rubber against several bacteria, such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli K 12, Escherichia coli FT 17 and Pseudomonas fluorescens. These results are promising because they not only add value to a by-product of the forestry industry, improving the mechanical properties of natural rubber from a sustainable approach but also increase the affinity of rubber with bacterial microorganisms that may play a role in certain ecosystems. Full article
Show Figures

Figure 1

16 pages, 6116 KiB  
Article
Hybrid Solid Polymer Electrolytes Based on Epoxy Resins, Ionic Liquid, and Ceramic Nanoparticles for Structural Applications
by Bianca K. Muñoz, Jorge Lozano, María Sánchez and Alejandro Ureña
Polymers 2024, 16(14), 2048; https://doi.org/10.3390/polym16142048 - 18 Jul 2024
Viewed by 762
Abstract
Solid polymer electrolytes (SPE) and composite polymer electrolytes (CPE) serve as crucial components in all-solid-state energy storage devices. Structural batteries and supercapacitors present a promising alternative for electric vehicles, integrating structural functionality with energy storage capability. However, despite their potential, these applications are [...] Read more.
Solid polymer electrolytes (SPE) and composite polymer electrolytes (CPE) serve as crucial components in all-solid-state energy storage devices. Structural batteries and supercapacitors present a promising alternative for electric vehicles, integrating structural functionality with energy storage capability. However, despite their potential, these applications are hampered by various challenges, particularly in the realm of developing new solid polymer electrolytes that require more investigation. In this study, novel solid polymer electrolytes and composite polymer electrolytes were synthesized using epoxy resin blends, ionic liquid, lithium salt, and alumina nanoparticles and subsequently characterized. Among the formulations tested, the optimal system, designated as L70P30ILE40Li1MAl2 and containing 40 wt.% of ionic liquid and 5.7 wt.% of lithium salt, exhibited exceptional mechanical properties. It displayed a remarkable storage modulus of 1.2 GPa and reached ionic conductivities of 0.085 mS/cm at 60 °C. Furthermore, a proof-of-concept supercapacitor was fabricated, demonstrating the practical application of the developed electrolyte system. Full article
Show Figures

Graphical abstract

16 pages, 5516 KiB  
Article
Polyethylene Film Surface Modification via Benzoic Acid Grafting
by Ana Luisa Grafia and Silvia Elena Barbosa
Polymers 2024, 16(9), 1291; https://doi.org/10.3390/polym16091291 - 5 May 2024
Viewed by 879
Abstract
A polyethylene (PE) film surface modification method is proposed via benzoic acid (BA) alkylation grafting to improve the surface affinity to polar substances. The procedure involves sequentially spraying AlCl3 and BA onto the heat-softened PE surface. The occurrence of the alkylation reaction [...] Read more.
A polyethylene (PE) film surface modification method is proposed via benzoic acid (BA) alkylation grafting to improve the surface affinity to polar substances. The procedure involves sequentially spraying AlCl3 and BA onto the heat-softened PE surface. The occurrence of the alkylation reaction was evaluated through comparative chemical, morphological, and thermal analyses. It was demonstrated that the grafting reaction of BA onto the PE film surface took place, limited to the surface layer, while preserving the bulk properties of PE. The reaction resulted in the formation of aluminum benzoate complexes, which improved the surface affinity to polar compounds. The impact of grafting on the surface properties of PE was further assessed by comparing the behavior of PE films treated with BA and untreated PE films when painted with watercolors. The PE film grafted with BA exhibited increased affinity towards watercolors, providing strong evidence of a change in surface polarity from hydrophobic to hydrophilic. These findings indicate that the proposed methodology effectively renders the PE surface paintable, even with non-toxic water-based inks, making it suitable for applications such as packaging. Full article
Show Figures

Figure 1

14 pages, 5262 KiB  
Article
Analysis on Isotropic and Anisotropic Samples of Polypropylene/Polyethyleneterephthalate Blend/Graphene Nanoplatelets Nanocomposites: Effects of a Rubbery Compatibilizer
by Vincenzo Titone, Marilena Baiamonte, Manuela Ceraulo, Luigi Botta and Francesco Paolo La Mantia
Polymers 2024, 16(8), 1092; https://doi.org/10.3390/polym16081092 - 14 Apr 2024
Viewed by 1461
Abstract
Over the past few years, polymer nanocomposites have garnered a significant amount of interest from both the scientific community and industry due to their remarkable versatility and wide range of potential uses in various fields, including automotive, electronics, medicine, textiles and environmental applications. [...] Read more.
Over the past few years, polymer nanocomposites have garnered a significant amount of interest from both the scientific community and industry due to their remarkable versatility and wide range of potential uses in various fields, including automotive, electronics, medicine, textiles and environmental applications. In this regard, this study focuses on the influence of a compatibilizer rubber on a nanocomposite incorporating graphene nanoparticles (GNPs), with a polymer matrix based on a blend of polypropylene (PP) and polyethylene terephthalate (PET). This effect has been investigated on both isotropic samples and on anisotropic/spun fiber samples. The influence of the compatibilizer rubber on morphological, rheological and mechanical properties was analysed and discussed. Mechanical and morphological properties were evaluated on both isotropic samples obtained by compression moulding and melt-spun fibers. The addition of the rubbery compatibilizer increased the viscosity, improving interfacial adhesion, and the same effect was observed for the melt strength and breaking stretching ratios. Mechanical properties, including the elastic modulus, tensile strength and elongation at break, improved in both types of samples but more significantly in the fibers. These improvements were attributed to the orientation of the matrix, the formation of PET microfibrils, and the reduction in the size of graphene nanoparticles due to the action of the elongational flow. This reduction, facilitated by the elongation flow and the action of the compatibilizer, improved matrix–nanofiller adhesion due to the increased contact area between the two polymeric phases and between the filler and matrix. Finally, a transition from brittle to ductile behaviour was observed, particularly in the system with the compatibilizer, attributed to defect reduction and improved stress transmission. Full article
Show Figures

Figure 1

17 pages, 8219 KiB  
Article
Biobased Composites of Poly(Lactic Acid) Melt Compounded with Bacterial and Vegetal Nanocelluloses Incorporated through Different Strategies
by Jimena Bovi, Juan Francisco Delgado, Orlando de la Osa, Mercedes Ana Peltzer, Celina Raquel Bernal and María Laura Foresti
Polymers 2024, 16(7), 898; https://doi.org/10.3390/polym16070898 - 25 Mar 2024
Cited by 2 | Viewed by 1152
Abstract
In the current contribution, bacterial nanocellulose obtained from a by-product of Kombucha tea production and vegetal nanocellulose isolated from milled rice husks were employed as fillers of PLA-based composites prepared by intensive mixing followed by compression molding. Given the challenges associated with the [...] Read more.
In the current contribution, bacterial nanocellulose obtained from a by-product of Kombucha tea production and vegetal nanocellulose isolated from milled rice husks were employed as fillers of PLA-based composites prepared by intensive mixing followed by compression molding. Given the challenges associated with the incorporation of nanocelluloses—initially obtained as aqueous suspensions—into melt compounding processes, and also with achieving a proper dispersion of the hydrophilic nanofillers within PLA, three different nanofibrils incorporation strategies were studied: i.e., direct mixing of dried milled nanocelluloses and PLA; masterbatching by solvent casting of native nanocelluloses followed by melt compounding; and masterbatching by solvent casting of acetylated nanocelluloses followed by melt compounding. Composites with varying filler content (from 0.5 wt.% to 7 wt.%) were characterized in terms of morphology, optical properties, and mechanical performance. Results revealed the relative suitability of each strategy employed to promote nanocelluloses dispersion within the PLA matrix. PLA/nanocellulose masterbatches prepared by solvent casting proved to be particularly useful for feeding the nanocelluloses into the processing equipment in a dry state with limited hornification. Acetylation also contributed to a better dispersion of both nanocelluloses within the PLA matrix, although no clear positive impact on the mechanical properties of the films was observed. Finally, filler loading played an important role in the films’ properties by increasing their stiffness while reducing their translucency. Full article
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 3546 KiB  
Review
A Review of Natural Fiber-Reinforced Composites for Lower-Limb Prosthetic Designs
by Angel D. Castro-Franco, Miriam Siqueiros-Hernández, Virginia García-Angel, Ismael Mendoza-Muñoz, Lidia E. Vargas-Osuna and Hernán D. Magaña-Almaguer
Polymers 2024, 16(9), 1293; https://doi.org/10.3390/polym16091293 - 5 May 2024
Cited by 1 | Viewed by 1644
Abstract
This paper presents a comprehensive review of natural fiber-reinforced composites (NFRCs) for lower-limb prosthetic designs. It covers the characteristics, types, and properties of natural fiber-reinforced composites as well as their advantages and drawbacks in prosthetic designs. This review also discusses successful prosthetic designs [...] Read more.
This paper presents a comprehensive review of natural fiber-reinforced composites (NFRCs) for lower-limb prosthetic designs. It covers the characteristics, types, and properties of natural fiber-reinforced composites as well as their advantages and drawbacks in prosthetic designs. This review also discusses successful prosthetic designs that incorporate NFRCs and the factors that make them effective. Additionally, this study explores the use of computational biomechanical models to evaluate the effectiveness of prosthetic devices and the key factors that are considered. Overall, this document provides a valuable resource for anyone interested in using NFRCs for lower-limb prosthetic designs. Full article
Show Figures

Figure 1

Back to TopTop