Processes in 2025

Special Issue Editor


E-Mail Website
Guest Editor
Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
Interests: green chemistry; process intensification; green extraction; enabling technologies (ultrasound, microwaves, hydrodynamic cavitation, ball milling, flow chemistry); sustainable chemical processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce this Special Issue, titled “Processes in 2025”, which is part of the MDPI journal New Year Special Issue Series. This Special Issue will be a collection of high-quality reviews and original research articles from Advisory Board Members, Editors-in-Chief, Editorial Board Members, Guest Editors, Topical Advisory Panel Members, Reviewer Board Members, Societies, Authors, and Reviewers.

This Special Issue will collect papers on innovative ideas from process/system-related research in chemistry, biology, material, energy, environment, food, pharmaceutical, manufacturing, automation control, catalysis, separation, and particle and similar engineering fields. We encourage all research groups to contribute up-to-date work on the latest developments in your areas of expertise. We look forward to receiving your submissions.

Prof. Dr. Giancarlo Cravotto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • chemical processes and systems
  • environmental and green processes
  • energy systems
  • process control and monitoring
  • biological processes and systems
  • catalysis enhanced processes
  • separation processes
  • particle processes
  • food process engineering
  • materials processes
  • automation control systems
  • manufacturing processes and systems
  • sustainable processes
  • AI-enabled process engineering
  • pharmaceutical processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 6539 KB  
Article
Atmospheric Plasma Etching-Assisted Chemical Mechanical Polishing for 4H-SiC: Parameter Optimization and Surface Mechanism Analysis
by Mengmeng Shen, Min Wei, Xuelai Li, Julong Yuan, Wei Hang and Yunxiao Han
Processes 2025, 13(8), 2550; https://doi.org/10.3390/pr13082550 - 13 Aug 2025
Viewed by 309
Abstract
Silicon carbide (SiC) is widely utilized in semiconductors, microelectronics, optoelectronics, and other advanced technologies. However, its inherent characteristics, such as its hardness, brittleness, and high chemical stability, limit the processing efficiency and application of SiC wafers. This study explores the use of plasma [...] Read more.
Silicon carbide (SiC) is widely utilized in semiconductors, microelectronics, optoelectronics, and other advanced technologies. However, its inherent characteristics, such as its hardness, brittleness, and high chemical stability, limit the processing efficiency and application of SiC wafers. This study explores the use of plasma etching as a pre-treatment step before chemical mechanical polishing (CMP) to enhance the material removal rate and improve CMP efficiency. Experiments were designed based on the Taguchi method to investigate the etching rate of plasma under various processing parameters, including applied power, nozzle-to-substrate distance, and etching time. The experimental results indicate that the etching rate is directly proportional to the applied power and increases with nozzle-to-substrate distance within 3–5 mm, while it is independent of etching time. A maximum etching rate of 5.99 μm/min is achieved under optimal conditions. And the etching mechanism and microstructural changes in SiC during plasma etching were analyzed using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), white light interferometry, and ultra-depth-of-field microscopy. XPS confirmed the formation of a softened SiO2 layer, which reduces hardness and enhances CMP efficiency; SEM revealed that etching pits form in relation to distance; and white light interferometry demonstrated that etching causes a smooth surface to become rough. Additionally, surface defects resulting from the etching process were analyzed to reveal the underlying reaction mechanism. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

20 pages, 2073 KB  
Article
Tomato Seed Inoculation with Bacillus subtilis Biofilm Mitigates Toxic Effects of Excessive Copper in the Substrate
by Gabriela Cristina Sarti, Antonio Paz-González, Josefina Ana Eva Cristóbal-Míguez, Gonzalo Arnedillo, Ana Rosa García and Mirta Esther Galelli
Processes 2025, 13(8), 2509; https://doi.org/10.3390/pr13082509 - 8 Aug 2025
Viewed by 380
Abstract
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus [...] Read more.
Accumulation of copper (Cu) in soils devoted to intensive agriculture due to anthropogenic additions is becoming a significant threat to plant productivity. Biological inoculants may play an important role in alleviating toxic effects of heavy metals on plants. The plant-growth-promoting rhizobacteria (PGPR) Bacillus subtilis subsp. spizizenii has demonstrated the ability to reduce harmful impacts of heavy metals on crops. This study aimed to evaluate the suitability of seed inoculation with biofilm produced by this bacterium to mitigate the severity of Cu toxicity on tomato. In the laboratory, first, B. subtilis was cultivated under increased Cu concentrations. Then, germination of inoculated and non-inoculated tomato seeds was tested for Cu concentrations of 0, 50, 100, 150, and 200 ppm. Next, a greenhouse experiment was conducted for four months to assess the effects of both inoculation and excess 150 ppm Cu in the substrate. The studied treatments included control, no inoculation and Cu surplus, inoculation and no Cu surplus, and inoculation plus Cu surplus. In the laboratory, first, the bacterium’s ability to grow in a liquid medium containing Cu was confirmed. Thereafter, we verified that the germination of non-inoculated seeds was negatively affected by Cu, with higher concentrations leading to a more detrimental effect. However, seed inoculation with biofilm mitigated the adverse impact of Cu on germination. Under greenhouse conditions, excess Cu significantly reduced root dry weight, tomato number, and tomato yield compared with the control, whereas shoot dry weight, plant height, leaf area, and soluble solid concentration (Brix index) did not experience significant changes (p < 0.05). However, seed inoculation mitigated the toxic effects of excess Cu, significantly enhancing all the aforementioned plant parameters, except plant height. Seed inoculation also significantly reduced the Cu contents in the fruits of tomato plants growing in the metal contaminated substrate. The biofilm of the B. subtilis strain used demonstrated its effectiveness as a bioinoculant, attenuating the detrimental effects induced by a substrate with excess Cu. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

21 pages, 3300 KB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 447
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

15 pages, 2939 KB  
Article
Optimization of Process Parameters for WEDM Processing SiCp/Al Based on Graphene Working Fluid
by Zhou Sun, Weining Lei, Linglei Kong and Yafeng He
Processes 2025, 13(7), 2156; https://doi.org/10.3390/pr13072156 - 7 Jul 2025
Viewed by 352
Abstract
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and [...] Read more.
In the process of machining an aluminum matrix silicon carbide (SiCp/Al) composite material using wire electric discharge machining (WEDM), the thermal conductivity and dielectric properties of working fluid, such as discharge medium and cool carrier, directly determine the material removal rate (MRR) and surface roughness (Ra). In this paper, graphene-working fluid is innovatively used as working medium to optimize the discharge process due to its high thermal conductivity and field emission characteristics. The single-factor experiments show that graphene can increase the MRR by 11.16% and decrease the Ra by 29.96% compared with traditional working fluids. In order to analyze the multi-parameter coupling effect, an L16 (44) orthogonal test is further designed, and the effects of the pulse width (Ton), duty cycle (DC), power tube number (PT), and wire speed (WS) on the MRR and Ra are determined using a signal-to-noise analysis. Based on a gray relational grade analysis, a multi-objective optimization model was established, and the priority of the MRR and Ra was determined using an AHP, and finally the optimal parameter combination (Ton = 22 μs, DC = 1:4, PT = 3, WS = 2) was obtained. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 1967 KB  
Review
Carbon-Based Heterogeneous Catalysis for Biomass Conversion to Levulinic Acid: A Special Focus on the Catalyst
by Laura G. Covinich, Nicolás M. Clauser and María C. Area
Processes 2025, 13(8), 2582; https://doi.org/10.3390/pr13082582 - 15 Aug 2025
Viewed by 428
Abstract
The conversion of cellulosic biomass into renewable chemicals can serve as a sustainable resource for levulinic acid (LA) production. LA yield is significantly influenced by reaction temperature, reaction time, substrate concentration, active sites, catalyst amount, catalyst porosity, and durability. Beyond the features of [...] Read more.
The conversion of cellulosic biomass into renewable chemicals can serve as a sustainable resource for levulinic acid (LA) production. LA yield is significantly influenced by reaction temperature, reaction time, substrate concentration, active sites, catalyst amount, catalyst porosity, and durability. Beyond the features of the catalyst, such as acidity, porosity, functional groups, and catalytic efficiency, the contact between the solid acid catalyst and the solid substrate is of vital importance. Solid-based catalysts show remarkable catalytic activity for cellulose-derived LA production, thanks to the incorporation of functional groups. For a solid carbon-based catalyst to be effective, a synergistic interaction between the binding domain (functional groups capable of anchoring cellulose to the catalyst surface, such as chloride groups, COOH, or OH) and the hydrolysis domain (due to their ability to cleave glycosidic bonds, such as in SO3H) is essential. As a relatively new market niche, carbon-based catalyst supports are projected to reach a market value of nearly USD 125 million by 2030. This review aims to highlight the advantages and limitations of carbon-based materials compared to conventional catalysts (including metal oxides or supported noble metals, among others) in features like catalytic activity, thermal stability, and cost, examine recent advancements in catalyst development, and identify key challenges and future research directions to enable more efficient, sustainable, and scalable processes for LA production. The novelty of this review lies in its focus on carbon-based catalysts for LA production, emphasizing their physical and chemical characteristics. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

Back to TopTop