remotesensing-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19092 KiB  
Article
Gauging the Severity of the 2012 Midwestern U.S. Drought for Agriculture
by Xiang Zhang, Chehan Wei, Renee Obringer, Deren Li, Nengcheng Chen and Dev Niyogi
Remote Sens. 2017, 9(8), 767; https://doi.org/10.3390/rs9080767 - 26 Jul 2017
Cited by 9 | Viewed by 6383
Abstract
Different drought indices often provide different diagnoses of drought severity, making it difficult to determine the best way to evaluate these different drought monitoring results. Additionally, the ability of a newly proposed drought index, the Process-based Accumulated Drought Index (PADI) has not yet [...] Read more.
Different drought indices often provide different diagnoses of drought severity, making it difficult to determine the best way to evaluate these different drought monitoring results. Additionally, the ability of a newly proposed drought index, the Process-based Accumulated Drought Index (PADI) has not yet been tested in United States. In this study, we quantified the severity of 2012 drought which affected the agricultural output for much of the Midwestern US. We used several popular drought indices, including the Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index with multiple time scales, Palmer Drought Severity Index, Palmer Z-index, VegDRI, and PADI by comparing the spatial distribution, temporal evolution, and crop impacts produced by each of these indices with the United States Drought Monitor. Results suggested this drought incubated around June 2011 and ended in May 2013. While different drought indices depicted drought severity variously. SPI outperformed SPEI and has decent correlation with yield loss especially at a 6 months scale and in the middle growth season, while VegDRI and PADI demonstrated the highest correlation especially in late growth season, indicating they are complementary and should be used together. These results are valuable for comparing and understanding the different performances of drought indices in the Midwestern US. Full article
(This article belongs to the Special Issue Remote Sensing of Land-Atmosphere Interactions)
Show Figures

Graphical abstract

7466 KiB  
Article
Retrieval of Biophysical Crop Variables from Multi-Angular Canopy Spectroscopy
by Martin Danner, Katja Berger, Matthias Wocher, Wolfram Mauser and Tobias Hank
Remote Sens. 2017, 9(7), 726; https://doi.org/10.3390/rs9070726 - 14 Jul 2017
Cited by 59 | Viewed by 7263
Abstract
The future German Environmental Mapping and Analysis Program (EnMAP) mission, due to launch in late 2019, will deliver high resolution hyperspectral data from space and will thus contribute to a better monitoring of the dynamic surface of the earth. Exploiting the satellite’s ±30° [...] Read more.
The future German Environmental Mapping and Analysis Program (EnMAP) mission, due to launch in late 2019, will deliver high resolution hyperspectral data from space and will thus contribute to a better monitoring of the dynamic surface of the earth. Exploiting the satellite’s ±30° across-track pointing capabilities will allow for the collection of hyperspectral time-series of homogeneous quality. Various studies have shown the possibility to retrieve geo-biophysical plant variables, like leaf area index (LAI) or leaf chlorophyll content (LCC), from narrowband observations with fixed viewing geometry by inversion of radiative transfer models (RTM). In this study we assess the capability of the well-known PROSPECT 5B + 4SAIL (Scattering by Arbitrarily Inclined Leaves) RTM to estimate these variables from off-nadir observations obtained during a field campaign with respect to EnMAP-like sun–target–sensor-geometries. A novel approach for multiple inquiries of a large look-up-table (LUT) in hierarchical steps is introduced that accounts for the varying instances of all variables of interest. Results show that anisotropic effects are strongest for early growth stages of the winter wheat canopy which influences also the retrieval of the variables. RTM inversions from off-nadir spectra lead to a decreased accuracy for the retrieval of LAI with a relative root mean squared error (rRMSE) of 18% at nadir vs. 25% (backscatter) and 24% (forward scatter) at off-nadir. For LCC estimations, however, off-nadir observations yield improvements, i.e., rRMSE (nadir) = 24% vs. rRMSE (forward scatter) = 20%. It follows that for a variable retrieval through RTM inversion, the final user will benefit from EnMAP time-series for biophysical studies regardless of the acquisition angle and will thus be able to exploit the maximum revisit capability of the mission. Full article
Show Figures

Graphical abstract

6532 KiB  
Article
Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models
by Jibo Yue, Guijun Yang, Changchun Li, Zhenhai Li, Yanjie Wang, Haikuan Feng and Bo Xu
Remote Sens. 2017, 9(7), 708; https://doi.org/10.3390/rs9070708 - 10 Jul 2017
Cited by 300 | Viewed by 15822
Abstract
Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV). [...] Read more.
Correct estimation of above-ground biomass (AGB) is necessary for accurate crop growth monitoring and yield prediction. We estimated AGB based on images obtained with a snapshot hyperspectral sensor (UHD 185 firefly, Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on an unmanned aerial vehicle (UAV). The UHD 185 images were used to calculate the crop height and hyperspectral reflectance of winter wheat canopies from hyperspectral and panchromatic images. We constructed several single-parameter models for AGB estimation based on spectral parameters, such as specific bands, spectral indices (e.g., Ratio Vegetation Index (RVI), NDVI, Greenness Index (GI) and Wide Dynamic Range VI (WDRVI)) and crop height and several models combined with spectral parameters and crop height. Comparison with experimental results indicated that incorporating crop height into the models improved the accuracy of AGB estimations (the average AGB is 6.45 t/ha). The estimation accuracy of single-parameter models was low (crop height only: R2 = 0.50, RMSE = 1.62 t/ha, MAE = 1.24 t/ha; R670 only: R2 = 0.54, RMSE = 1.55 t/ha, MAE = 1.23 t/ha; NDVI only: R2 = 0.37, RMSE = 1.81 t/ha, MAE = 1.47 t/ha; partial least squares regression R2 = 0.53, RMSE = 1.69, MAE = 1.20), but accuracy increased when crop height and spectral parameters were combined (partial least squares regression modeling: R2 = 0.78, RMSE = 1.08 t/ha, MAE = 0.83 t/ha; verification: R2 = 0.74, RMSE = 1.20 t/ha, MAE = 0.96 t/ha). Our results suggest that crop height determined from the new UAV-based snapshot hyperspectral sensor can improve AGB estimation and is advantageous for mapping applications. This new method can be used to guide agricultural management. Full article
(This article belongs to the Special Issue Earth Observations for Precision Farming in China (EO4PFiC))
Show Figures

Graphical abstract

10278 KiB  
Article
Estimating Mangrove Canopy Height and Above-Ground Biomass in the Everglades National Park with Airborne LiDAR and TanDEM-X Data
by Emanuelle A. Feliciano, Shimon Wdowinski, Matthew D. Potts, Seung-Kuk Lee and Temilola E. Fatoyinbo
Remote Sens. 2017, 9(7), 702; https://doi.org/10.3390/rs9070702 - 7 Jul 2017
Cited by 39 | Viewed by 9168
Abstract
Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal [...] Read more.
Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal mangrove forest of the Everglades National Park (ENP) provides an ideal location for studying these processes, as harmful human activities are minimal. We estimated mangrove canopy height and AGB in the ENP using Airborne LiDAR/Laser (ALS) and TanDEM-X (TDX) datasets acquired between 2011 and 2013. Analysis of both datasets revealed that mangrove canopy height can reach up to ~25 m and AGB can reach up to ~250 Mg•ha−1. In general, mangroves ranging from 9 m to 12 m in stature dominate the forest canopy. The comparison of ALS and TDX canopy height observations yielded an R2 = 0.85 and Root Mean Square Error (RMSE) = 1.96 m. Compared to a previous study based on data acquired during 2000–2004, our analysis shows an increase in mangrove stature and AGB, suggesting that ENP mangrove forests are continuing to accumulate biomass. Our results suggest that ENP mangrove forests have managed to recover from natural disturbances, such as Hurricane Wilma. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

10045 KiB  
Article
Calibration of METRIC Model to Estimate Energy Balance over a Drip-Irrigated Apple Orchard
by Daniel De la Fuente-Sáiz, Samuel Ortega-Farías, David Fonseca, Samuel Ortega-Salazar, Ayse Kilic and Richard Allen
Remote Sens. 2017, 9(7), 670; https://doi.org/10.3390/rs9070670 - 29 Jun 2017
Cited by 31 | Viewed by 6827
Abstract
A field experiment was carried out to calibrate and evaluate the METRIC (Mapping EvapoTranspiration at high Resolution Internalized with Calibration) model for estimating the spatial and temporal variability of instantaneous net radiation (Rni), soil heat flux (Gi), sensible heat [...] Read more.
A field experiment was carried out to calibrate and evaluate the METRIC (Mapping EvapoTranspiration at high Resolution Internalized with Calibration) model for estimating the spatial and temporal variability of instantaneous net radiation (Rni), soil heat flux (Gi), sensible heat flux (Hi), and latent heat flux (LEi) over a drip-irrigated apple (Malus domestica cv. Pink Lady) orchard located in the Pelarco valley, Maule Region, Chile (35°25′20′′LS; 71°23′57′′LW; 189 m.a.s.l.). The study was conducted in a plot of 5.5 hectares using 20 satellite images (Landsat 7 ETM+) acquired on clear sky days during three growing seasons (2012/2013, 2013/2014 and 2014/2015). Specific sub-models to estimate Gi, leaf area index (LAI) and aerodynamic roughness length for momentum transfer (Zom) were calibrated for the apple orchard as an improvement to the standard METRIC model. The performance of the METRIC model was evaluated at the time of satellite overpass using measurements of Hi and LEi obtained from an eddy correlation system. In addition, estimated values of Rni, Gi and LAI were compared with ground-truth measurements from a four-way net radiometer, soil heat flux plates and plant canopy analyzer, respectively. Validation indicated that LAI, Zom and Gi were estimated using the calibrated functions with errors of +2%, +6% and +3% while those were computed using the standard functions with error of +59%, +83%, and +12%, respectively. In addition, METRIC using the calibrated functions estimated Hi and LEi with error of +5% and +16%, while using the original functions estimated Hi and LEi with error of +29% and +26%, respectively. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

13249 KiB  
Article
SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm
by Lu She, Linlu Mei, Yong Xue, Yahui Che and Jie Guang
Remote Sens. 2017, 9(3), 253; https://doi.org/10.3390/rs9030253 - 9 Mar 2017
Cited by 15 | Viewed by 10114
Abstract
The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface. The surface reflectance is an important parameter for the estimation of other remote sensing parameters linked to the eco-environment, [...] Read more.
The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface. The surface reflectance is an important parameter for the estimation of other remote sensing parameters linked to the eco-environment, atmosphere environment and energy balance. One of the key issues to achieve atmospheric corrected surface reflectance is to precisely retrieve the aerosol optical properties, especially Aerosol Optical Depth (AOD). The retrieval of AOD and corresponding atmospheric correction procedure normally use the full radiative transfer calculation or Look-Up-Table (LUT) methods, which is very time-consuming. In this paper, a Simplified AtmospHeric correction AlgoRithm for gAofen data (SAHARA) is presented for the retrieval of AOD and corresponding atmospheric correction procedure. This paper is the first part of the algorithm, which describes the aerosol retrieval algorithm. In order to achieve high-accuracy analytical form for both LUT and surface parameterization, the MODIS Dark-Target (DT) aerosol types and Deep Blue (DB) similar surface parameterization have been proposed for GF4 data. Limited Gaofen observations (i.e., all that were available) have been tested and validated. The retrieval results agree quite well with MODIS Collection 6.0 aerosol product, with a correlation coefficient of R2 = 0.72. The comparison between GF4 derived AOD and Aerosol Robotic Network (AERONET) observations has a correlation coefficient of R2 = 0.86. The algorithm, after comprehensive validation, can be used as an operational running algorithm for creating aerosol product from the Chinese GF4 satellite. Full article
(This article belongs to the Special Issue Atmospheric Correction of Remote Sensing Data)
Show Figures

Graphical abstract

1817 KiB  
Article
Assessment of Canopy Chlorophyll Content Retrieval in Maize and Soybean: Implications of Hysteresis on the Development of Generic Algorithms
by Yi Peng, Anthony Nguy-Robertson, Timothy Arkebauer and Anatoly A. Gitelson
Remote Sens. 2017, 9(3), 226; https://doi.org/10.3390/rs9030226 - 2 Mar 2017
Cited by 92 | Viewed by 8398
Abstract
Canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting [...] Read more.
Canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in three irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm reparameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2. Full article
Show Figures

Graphical abstract

4316 KiB  
Article
Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas
by Mohammad El Hajj, Nicolas Baghdadi, Ibrahim Fayad, Ghislain Vieilledent, Jean-Stéphane Bailly and Dinh Ho Tong Minh
Remote Sens. 2017, 9(3), 213; https://doi.org/10.3390/rs9030213 - 25 Feb 2017
Cited by 27 | Viewed by 6672
Abstract
Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map [...] Read more.
Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R2 = 0.62) to 74.1 t/ha (R2 = 0.71). Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach). Full article
Show Figures

Graphical abstract

8099 KiB  
Article
Hyperspatial and Multi-Source Water Body Mapping: A Framework to Handle Heterogeneities from Observations and Targets over Large Areas
by Raphaël D’Andrimont, Catherine Marlier and Pierre Defourny
Remote Sens. 2017, 9(3), 211; https://doi.org/10.3390/rs9030211 - 25 Feb 2017
Cited by 4 | Viewed by 6133
Abstract
Recent advances in remote sensing technologies and the cost reduction of surveying, along with the importance of natural resources management, present new opportunities for mapping land cover at a very high resolution over large areas. This paper proposes and applies a framework to [...] Read more.
Recent advances in remote sensing technologies and the cost reduction of surveying, along with the importance of natural resources management, present new opportunities for mapping land cover at a very high resolution over large areas. This paper proposes and applies a framework to update hyperspatial resolution (<1 m) land thematic mapping over large areas by handling multi-source and heterogeneous data. This framework deals with heterogeneity both from observation and the targeted features. First, observation diversity comes from the different platform and sensor types (25-cm passive optical and 1-m LiDAR) as well as the different instruments (three cameras and two LiDARs) used in heterogeneous observation conditions (date, time, and sun angle). Second, the local heterogeneity of the targeted features results from their within-type diversity and neighborhood effects. This framework is applied to surface water bodies in the southern part of Belgium (17,000 km2). This makes it possible to handle both observation and landscape contextual heterogeneity by mapping observation conditions, stratifying spatially and applying ad hoc classification procedures. The proposed framework detects 83% of the water bodies—if swimming pools are not taken into account—and more than 98% of those water bodies greater than 100 m2, with an edge accuracy below 1 m over large areas. Full article
Show Figures

Graphical abstract

11211 KiB  
Article
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
by Olli Nevalainen, Eija Honkavaara, Sakari Tuominen, Niko Viljanen, Teemu Hakala, Xiaowei Yu, Juha Hyyppä, Heikki Saari, Ilkka Pölönen, Nilton N. Imai and Antonio M. G. Tommaselli
Remote Sens. 2017, 9(3), 185; https://doi.org/10.3390/rs9030185 - 23 Feb 2017
Cited by 342 | Viewed by 26851
Abstract
Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that [...] Read more.
Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees representing various tree species and developmental stages were collected in June 2014 using a UAV remote sensing system equipped with a frame format hyperspectral camera and an RGB camera in highly variable weather conditions. Dense point clouds were measured photogrammetrically by automatic image matching using high resolution RGB images with a 5 cm point interval. Spectral features were obtained from the hyperspectral image blocks, the large radiometric variation of which was compensated for by using a novel approach based on radiometric block adjustment with the support of in-flight irradiance observations. Spectral and 3D point cloud features were used in the classification experiment with various classifiers. The best results were obtained with Random Forest and Multilayer Perceptron (MLP) which both gave 95% overall accuracies and an F-score of 0.93. Accuracy of individual tree identification from the photogrammetric point clouds varied between 40% and 95%, depending on the characteristics of the area. Challenges in reference measurements might also have reduced these numbers. Results were promising, indicating that hyperspectral 3D remote sensing was operational from a UAV platform even in very difficult conditions. These novel methods are expected to provide a powerful tool for automating various environmental close-range remote sensing tasks in the very near future. Full article
(This article belongs to the Special Issue Recent Trends in UAV Remote Sensing)
Show Figures

Graphical abstract

3711 KiB  
Article
Urban Land Extraction Using VIIRS Nighttime Light Data: An Evaluation of Three Popular Methods
by Yinyin Dou, Zhifeng Liu, Chunyang He and Huanbi Yue
Remote Sens. 2017, 9(2), 175; https://doi.org/10.3390/rs9020175 - 20 Feb 2017
Cited by 89 | Viewed by 10148
Abstract
Timely and accurate extraction of urban land area using the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data is important for urban studies. However, a comprehensive assessment of the existing methods for extracting urban land using VIIRS nighttime [...] Read more.
Timely and accurate extraction of urban land area using the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data is important for urban studies. However, a comprehensive assessment of the existing methods for extracting urban land using VIIRS nighttime light data remains inadequate. Therefore, we first reviewed the relevant methods and selected three popular methods for extracting urban land area using nighttime light data. These methods included local-optimized thresholding (LOT), vegetation-adjusted nighttime light urban index (VANUI), integrated nighttime lights, normalized difference vegetation index, and land surface temperature support vector machine classification (INNL-SVM). Then, we assessed the performance of these methods for extracting urban land area based on the VIIRS nighttime light data in seven evaluation areas with various natural and socioeconomic conditions in China. We found that INNL-SVM had the best performance with an average kappa of 0.80, which was 6.67% higher than the LOT and 2.56% higher than the VANUI. The superior performance of INNL-SVM was mainly attributed to the integration of information on nighttime light, vegetation cover, and land surface temperature. This integration effectively reduced the commission and omission errors arising from the overflow effect and low light brightness of the VIIRS nighttime light data. Additionally, INNL-SVM can extract urban land area more easily. Thus, we suggest that INNL-SVM has great potential for effectively extracting urban land with VIIRS nighttime light data at large scales. Full article
(This article belongs to the Special Issue Recent Advances in Remote Sensing with Nighttime Lights)
Show Figures

Graphical abstract

28694 KiB  
Article
Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification
by Shuzhen Zhang, Shutao Li, Wei Fu and Leiyuan Fang
Remote Sens. 2017, 9(2), 139; https://doi.org/10.3390/rs9020139 - 7 Feb 2017
Cited by 76 | Viewed by 11041
Abstract
Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale [...] Read more.
Recently, superpixel segmentation has been proven to be a powerful tool for hyperspectral image (HSI) classification. Nonetheless, the selection of the optimal superpixel size is a nontrivial task. In addition, compared with single-scale superpixel segmentation, the same image segmented on a different scale can obtain different structure information. To overcome such a drawback also utilizing the structural information, a multiscale superpixel-based sparse representation (MSSR) algorithm for the HSI classification is proposed. Specifically, a modified segmentation strategy of multiscale superpixels is firstly applied on the HSI. Once the superpixels on different scales are obtained, the joint sparse representation classification is used to classify the multiscale superpixels. Furthermore, majority voting is utilized to fuse the labels of different scale superpixels and to obtain the final classification result. Two merits are realized by the MSSR. First, multiscale information fusion can more effectively explore the spatial information of HSI. Second, in the multiscale superpixel segmentation, except for the first scale, the superpixel number on a different scale for different HSI datasets can be adaptively changed based on the spatial complexity of the corresponding HSI. Experiments on four real HSI datasets demonstrate the qualitative and quantitative superiority of the proposed MSSR algorithm over several well-known classifiers. Full article
Show Figures

Graphical abstract

6584 KiB  
Article
Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2
by Nathan Torbick, Diya Chowdhury, William Salas and Jiaguo Qi
Remote Sens. 2017, 9(2), 119; https://doi.org/10.3390/rs9020119 - 1 Feb 2017
Cited by 196 | Viewed by 23040
Abstract
Assessment and monitoring of rice agriculture over large areas has been limited by cloud cover, optical sensor spatial and temporal resolutions, and lack of systematic or open access radar. Dense time series of open access Sentinel-1 C-band data at moderate spatial resolution offers [...] Read more.
Assessment and monitoring of rice agriculture over large areas has been limited by cloud cover, optical sensor spatial and temporal resolutions, and lack of systematic or open access radar. Dense time series of open access Sentinel-1 C-band data at moderate spatial resolution offers new opportunities for monitoring agriculture. This is especially pertinent in South and Southeast Asia where rice is critical to food security and mostly grown during the rainy seasons when high cloud cover is present. In this research application, time series Sentinel-1A Interferometric Wide images (632) were utilized to map rice extent, crop calendar, inundation, and cropping intensity across Myanmar. An updated (2015) land use land cover map fusing Sentinel-1, Landsat-8 OLI, and PALSAR-2 were integrated and classified using a randomforest algorithm. Time series phenological analyses of the dense Sentinel-1 data were then executed to assess rice information across all of Myanmar. The broad land use land cover map identified 186,701 km2 of cropland across Myanmar with mean out-of-sample kappa of over 90%. A phenological time series analysis refined the cropland class to create a rice mask by extrapolating unique indicators tied to the rice life cycle (dynamic range, inundation, growth stages) from the dense time series Sentinel-1 to map rice paddy characteristics in an automated approach. Analyses show that the harvested rice area was 6,652,111 ha with general (R2 = 0.78) agreement with government census statistics. The outcomes show strong ability to assess and monitor rice production at moderate scales over a large cloud-prone region. In countries such as Myanmar with large populations and governments dependent upon rice production, more robust and transparent monitoring and assessment tools can help support better decision making. These results indicate that systematic and open access Synthetic Aperture Radar (SAR) can help scale information required by food security initiatives and Monitoring, Reporting, and Verification programs. Full article
Show Figures

Graphical abstract

4880 KiB  
Article
Integrating Radarsat-2, Lidar, and Worldview-3 Imagery to Maximize Detection of Forested Inundation Extent in the Delmarva Peninsula, USA
by Melanie K. Vanderhoof, Hayley E. Distler, Di Ana Teresa G. Mendiola and Megan Lang
Remote Sens. 2017, 9(2), 105; https://doi.org/10.3390/rs9020105 - 25 Jan 2017
Cited by 23 | Viewed by 9206
Abstract
Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring [...] Read more.
Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring within both Maryland and Delaware. We integrated six quad-polarized Radarsat-2 images, Worldview-3 imagery, and an enhanced topographic wetness index in a random forest model. Output maps were filtered using light detection and ranging (lidar)-derived depressions to maximize the accuracy of forested inundation extent. Overall accuracy within the integrated and filtered model was 94.3%, with 5.5% and 6.0% errors of omission and commission for inundation, respectively. Accuracy of inundation maps obtained using Radarsat-2 alone were likely detrimentally affected by less than ideal angles of incidence and recent precipitation, but were likely improved by targeting the period between snowmelt and leaf-out for imagery collection. Across the six Radarsat-2 dates, filtering inundation outputs by lidar-derived depressions slightly elevated errors of omission for water (+1.0%), but decreased errors of commission (−7.8%), resulting in an average increase of 5.4% in overall accuracy. Depressions were derived from lidar datasets collected under both dry and average wetness conditions. Although antecedent wetness conditions influenced the abundance and total area mapped as depression, the two versions of the depression datasets showed a similar ability to reduce error in the inundation maps. Accurate mapping of surface water is critical to predicting and monitoring the effect of human-induced change and interannual variability on water quantity and quality. Full article
(This article belongs to the Special Issue Remote Sensing of Climate Change and Water Resources)
Show Figures

Graphical abstract

Back to TopTop