sensors-logo

Journal Browser

Journal Browser

Recent Advances in Sensors for Chemical Detection Applications

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Chemical Sensors".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 1339

Special Issue Editor


E-Mail Website
Guest Editor
ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability, Division of Sustainable Materials, Laboratory Functional Materials and Technologies for Sustainable Applications, Brindisi Research Center, km 706, Strada Statale 7, Appia, I-72100 Brindisi, Italy
Interests: sensor materials; functional materials; gas sensors; air quality sensor systems; sensor technology development; environmental measurements; urban air quality sensor networks; smart cities applications; environmental sustainability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Chemical detection based on low-cost sensor technologies has become increasingly popular for several emerging applications, such as industrial process control, chemical threat monitoring, green chemistry, environmental sustainability, smart cities, hydrogen economy, energy saving, wearable devices, IoT applications, public health protection, sustainable mobility, autonomous vehicles, and community sensing.

Functional materials are cross-cutting technologies used for chemical detection to provide advanced gas sensors at a laboratory level and real-world testing in many industrial applications. Low-power consumption, high-quality data, and optimal performance are some important parameters used for a new generation of low-cost chemical sensors. Portable sensor systems and wireless sensor networks are typical approaches used to monitor chemical threats in long-term operation.

Current low-cost sensor technologies include numerous types of transducers, such as chemiresistor, electrochemical, transistor, optical, mass-sensitive, catalytic, and other hybrid configurations, evolving quickly with different open questions and considerable challenges, such as sensitivity, selectivity, stability, detection limits, calibration, accuracy, and so on. Understanding the limitations and capabilities of current low-cost sensor technologies for chemical detection is a key issue for future applications.

This Special Issue will focus on low-cost sensor technology, gas sensors, chemical sensors, advanced active materials, sensor nodes, hardware innovations, data communications, system integration, sensor testing, processing/corrections algorithms, machine learning, new solutions, and applications for chemical detection issues. Proper calibration techniques of chemical sensors are necessary, both in laboratory and field applications. Wireless sensor networks will be considered in the context of chemical detection applications.

In this Special Issue, we kindly invite front-line scientists to submit original researches and review articles on Recent Advances in Sensors for Chemical Detection Applications.

Potential topics include, but are not limited to, the following:

  • Gas sensors;
  • Chemical detection;
  • Advanced materials for chemical sensing;
  • Novel gas sensor materials;
  • Sensor calibration;
  • Sensor systems;
  • Machine Learning algorithms;
  • Wireless sensor networks;
  • Chemical threats monitoring;
  • Environmental measurements;
  • Sensors for smart city applications;
  • Sensors for environmental sustainability;
  • Sensors for energy applications;
  • Sensors for IoT applications;
  • Sensors for industrial applications;
  • Sensors for sustainable mobility;
  • Case-studies of chemical detection campaigns;
  • New concepts and trends in chemical sensing.

Prof. Dr. Michele Penza
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gas sensors
  • chemical sensors
  • sensor active materials
  • advanced functional nanomaterials
  • portable chemical sensor-systems
  • chemical sensor modelling
  • IoT devices
  • machine learning engineering
  • chemical sensor applications
  • new concepts in chemical sensing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 1695 KiB  
Article
Comparison of Classical and Inverse Calibration Equations in Chemical Analysis
by Hsuan-Yu Chen and Chiachung Chen
Sensors 2024, 24(21), 7038; https://doi.org/10.3390/s24217038 - 31 Oct 2024
Viewed by 389
Abstract
Chemical analysis adopts a calibration curve to establish the relationship between the measuring technique’s response and the target analyte’s standard concentration. The calibration equation is established using regression analysis to verify the response of a chemical instrument to the known properties of materials [...] Read more.
Chemical analysis adopts a calibration curve to establish the relationship between the measuring technique’s response and the target analyte’s standard concentration. The calibration equation is established using regression analysis to verify the response of a chemical instrument to the known properties of materials that served as standard values. An adequate calibration equation ensures the performance of these instruments. There are two kinds of calibration equations: classical equations and inverse equations. For the classical equation, the standard values are independent, and the instrument’s response is dependent. The inverse equation is the opposite: the instrument’s response is the independent value. For the new response value, the calculation of the new measurement by the classical equation must be transformed into a complex form to calculate the measurement values. However, the measurement values of the inverse equation could be computed directly. Different forms of calibration equations besides the linear equation could be used for the inverse calibration equation. This study used measurement data sets from two kinds of humidity sensors and nine data sets from the literature to evaluate the predictive performance of two calibration equations. Four criteria were proposed to evaluate the predictive ability of two calibration equations. The study found that the inverse calibration equation could be an effective tool for complex calibration equations in chemical analysis. The precision of the instrument’s response is essential to ensure predictive performance. The inverse calibration equation could be embedded into the measurement device, and then intelligent instruments could be enhanced. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

Back to TopTop