Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2158 KiB  
Review
Security and Privacy in IoT-Cloud-Based e-Health Systems—A Comprehensive Review
by Chanapha Butpheng, Kuo-Hui Yeh and Hu Xiong
Symmetry 2020, 12(7), 1191; https://doi.org/10.3390/sym12071191 - 17 Jul 2020
Cited by 121 | Viewed by 20215
Abstract
When the Internet and other interconnected networks are used in a health system, it is referred to as “e-Health.” In this paper, we examined research studies from 2017–2020 to explore the utilization of intelligent techniques in health and its evolution over time, particularly [...] Read more.
When the Internet and other interconnected networks are used in a health system, it is referred to as “e-Health.” In this paper, we examined research studies from 2017–2020 to explore the utilization of intelligent techniques in health and its evolution over time, particularly the integration of Internet of Things (IoT) devices and cloud computing. E-Health is defined as “the ability to seek, find, understand and appraise health information derived from electronic sources and acquired knowledge to properly solve or treat health problems. As a repository for health information as well as e-Health analysis, the Internet has the potential to protect consumers from harm and empower them to participate fully in informed health-related decision-making. Most importantly, high levels of e-Health integration mitigate the risk of encountering unreliable information on the Internet. Various research perspectives related to security and privacy within IoT-cloud-based e-Health systems are examined, with an emphasis on the opportunities, benefits and challenges of the implementation such systems. The combination of IoT-based e-Health systems integrated with intelligent systems such as cloud computing that provide smart objectives and applications is a promising future trend. Full article
Show Figures

Figure 1

30 pages, 6900 KiB  
Review
Enantioselective Catalytic Synthesis of N-alkylated Indoles
by Dmitri Trubitsõn and Tõnis Kanger
Symmetry 2020, 12(7), 1184; https://doi.org/10.3390/sym12071184 - 17 Jul 2020
Cited by 17 | Viewed by 5120
Abstract
During the past two decades, the interest in new methodologies for the synthesis of chiral N-functionalized indoles has grown rapidly. The review illustrates efficient applications of organocatalytic and organometallic strategies for the construction of chiral α-N-branched indoles. Both the direct [...] Read more.
During the past two decades, the interest in new methodologies for the synthesis of chiral N-functionalized indoles has grown rapidly. The review illustrates efficient applications of organocatalytic and organometallic strategies for the construction of chiral α-N-branched indoles. Both the direct functionalization of the indole core and indirect methods based on asymmetric N-alkylation of indolines, isatins and 4,7-dihydroindoles are discussed. Full article
(This article belongs to the Special Issue Chiral Auxiliaries and Chirogenesis II)
Show Figures

Graphical abstract

19 pages, 6583 KiB  
Article
Traffic Flow Density Model and Dynamic Traffic Congestion Model Simulation Based on Practice Case with Vehicle Network and System Traffic Intelligent Communication
by Eduard Zadobrischi, Lucian-Mihai Cosovanu and Mihai Dimian
Symmetry 2020, 12(7), 1172; https://doi.org/10.3390/sym12071172 - 15 Jul 2020
Cited by 32 | Viewed by 10414
Abstract
The massive increase in the number of vehicles has set a precedent in terms of congestion, being one of the important factors affecting the flow of traffic, but there are also effects on the world economy. The studies carried out so far try [...] Read more.
The massive increase in the number of vehicles has set a precedent in terms of congestion, being one of the important factors affecting the flow of traffic, but there are also effects on the world economy. The studies carried out so far try to highlight solutions that will streamline the traffic, as society revolves around transportation and its symmetry. Current research highlights that the increased density of vehicles could be remedied by dedicated short-range communications (DSRC) systems through communications of the type vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) or vehicle-to-everything (V2X). We can say that wireless communication technologies have the potential to significantly change the efficiency and road safety, thus improving the efficiency of transport systems. An important factor is to comply with the requirements imposed on the use of vehicle safety and transport applications. Therefore, this paper focuses on several simulations on the basis of symmetry models, implemented in practical cases in order to streamline vehicle density and reduce traffic congestion. The scenarios aim at both the communication of the vehicles with each other and their prioritization by the infrastructure, so we can have a report on the efficiency of the proposed models. Full article
(This article belongs to the Special Issue Symmetry and IoT Intelligence in the Post Pandemic Economy)
Show Figures

Graphical abstract

43 pages, 620 KiB  
Article
Unitarization Technics in Hadron Physics with Historical Remarks
by José Antonio Oller
Symmetry 2020, 12(7), 1114; https://doi.org/10.3390/sym12071114 - 3 Jul 2020
Cited by 38 | Viewed by 2412
Abstract
We review a series of unitarization techniques that have been used during the last decades, many of them in connection with the advent and development of current algebra and later of Chiral Perturbation Theory. Several methods are discussed like the generalized effective-range expansion, [...] Read more.
We review a series of unitarization techniques that have been used during the last decades, many of them in connection with the advent and development of current algebra and later of Chiral Perturbation Theory. Several methods are discussed like the generalized effective-range expansion, K-matrix approach, Inverse Amplitude Method, Padé approximants and the N / D method. More details are given for the latter though. We also consider how to implement them in order to correct by final-state interactions. In connection with this some other methods are also introduced like the expansion of the inverse of the form factor, the Omnés solution, generalization to coupled channels and the Khuri-Treiman formalism, among others. Full article
Show Figures

Figure 1

20 pages, 3641 KiB  
Article
Racemic Phospholipids for Origin of Life Studies
by Emiliano Altamura, Arnaud Comte, Alice D’Onofrio, Charlotte Roussillon, Dimitri Fayolle, René Buchet, Fabio Mavelli, Pasquale Stano, Michele Fiore and Peter Strazewski
Symmetry 2020, 12(7), 1108; https://doi.org/10.3390/sym12071108 - 3 Jul 2020
Cited by 14 | Viewed by 3813
Abstract
Although prebiotic condensations of glycerol, phosphate and fatty acids produce phospholipid esters with a racemic backbone, most experimental studies on vesicles intended as protocell models have been carried out by employing commercial enantiopure phospholipids. Current experimental research on realistic protocell models urgently requires [...] Read more.
Although prebiotic condensations of glycerol, phosphate and fatty acids produce phospholipid esters with a racemic backbone, most experimental studies on vesicles intended as protocell models have been carried out by employing commercial enantiopure phospholipids. Current experimental research on realistic protocell models urgently requires racemic phospholipids and efficient synthetic routes for their production. Here we propose three synthetic pathways starting from glycerol or from racemic solketal (α,β-isopropylidene-dl-glycerol) for the gram-scale production (up to 4 g) of racemic phospholipid ester precursors. We describe and compare these synthetic pathways with literature data. Racemic phosphatidylcholines and phosphatidylethanolamines were obtained in good yields and high purity from 1,2-diacylglycerols. Racemic POPC (rac-POPC, (R,S)-1-palmitoyl-2-oleoyl-3-phosphocholine), was used as a model compound for the preparation of giant vesicles (GVs). Confocal laser scanning fluorescence microscopy was used to compare GVs prepared from enantiopure (R)-POPC), racemic POPC (rac-POPC) and a scalemic mixture (scal-POPC) of (R)-POPC enriched with rac-POPC. Vesicle morphology and size distribution were similar among the different (R)-POPC, rac-POPC and scal-POPC, while calcein entrapments in (R)-POPC and in scal-POPC were significantly distinct by about 10%. Full article
(This article belongs to the Special Issue Chirality and the Origin of Life)
Show Figures

Figure 1

23 pages, 831 KiB  
Article
SU(2) Symmetry of Qubit States and Heisenberg–Weyl Symmetry of Systems with Continuous Variables in the Probability Representation of Quantum Mechanics
by Peter Adam, Vladimir A. Andreev, Margarita A. Man’ko, Vladimir I. Man’ko and Matyas Mechler
Symmetry 2020, 12(7), 1099; https://doi.org/10.3390/sym12071099 - 2 Jul 2020
Cited by 14 | Viewed by 2757
Abstract
In view of the probabilistic quantizer–dequantizer operators introduced, the qubit states (spin-1/2 particle states, two-level atom states) realizing the irreducible representation of the S U ( 2 ) symmetry group are identified with probability distributions (including the conditional ones) of classical-like dichotomic random [...] Read more.
In view of the probabilistic quantizer–dequantizer operators introduced, the qubit states (spin-1/2 particle states, two-level atom states) realizing the irreducible representation of the S U ( 2 ) symmetry group are identified with probability distributions (including the conditional ones) of classical-like dichotomic random variables. The dichotomic random variables are spin-1/2 particle projections m = ± 1 / 2 onto three perpendicular directions in the space. The invertible maps of qubit density operators onto fair probability distributions are constructed. In the suggested probability representation of quantum states, the Schrödinger and von Neumann equations for the state vectors and density operators are presented in explicit forms of the linear classical-like kinetic equations for the probability distributions of random variables. The star-product and quantizer–dequantizer formalisms are used to study the qubit properties; such formalisms are discussed for photon tomographic probability distribution and its correspondence to the Heisenberg–Weyl symmetry properties. Full article
(This article belongs to the Special Issue Symmetry in Quantum Systems)
15 pages, 244 KiB  
Article
Type 2 Degenerate Poly-Euler Polynomials
by Dae Sik Lee, Hye Kyung Kim and Lee-Chae Jang
Symmetry 2020, 12(6), 1011; https://doi.org/10.3390/sym12061011 - 15 Jun 2020
Cited by 10 | Viewed by 2345
Abstract
In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a [...] Read more.
In recent years, many mathematicians have studied the degenerate versions of many special polynomials and numbers. The polyexponential functions were introduced by Hardy and rediscovered by Kim, as inverses to the polylogarithms functions. The paper is divided two parts. First, we introduce a new type of the type 2 poly-Euler polynomials and numbers constructed from the modified polyexponential function, the so-called type 2 poly-Euler polynomials and numbers. We show various expressions and identities for these polynomials and numbers. Some of them involving the (poly) Euler polynomials and another special numbers and polynomials such as (poly) Bernoulli polynomials, the Stirling numbers of the first kind, the Stirling numbers of the second kind, etc. In final section, we introduce a new type of the type 2 degenerate poly-Euler polynomials and the numbers defined in the previous section. We give explicit expressions and identities involving those polynomials in a similar direction to the previous section. Full article
22 pages, 2369 KiB  
Article
Two-Pole Structures in QCD: Facts, Not Fantasy!
by Ulf-G. Meißner
Symmetry 2020, 12(6), 981; https://doi.org/10.3390/sym12060981 - 8 Jun 2020
Cited by 62 | Viewed by 3792
Abstract
The two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states. The story began with the Λ ( 1405 ) , when in 2001, using unitarized chiral perturbation theory, it [...] Read more.
The two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states. The story began with the Λ ( 1405 ) , when in 2001, using unitarized chiral perturbation theory, it was observed that there are two poles in the complex plane, one close to the K ¯ p and the other close to the π Σ threshold. This was later understood combining the SU(3) limit and group-theoretical arguments. Different unitarization approaches that all lead to the two-pole structure have been considered in the mean time, showing some spread in the pole positions. This fact is now part of the PDG book, although it is not yet listed in the summary tables. Here, I discuss the open ends and critically review approaches that cannot deal with this issue. In the meson sector, some excited charm mesons are good candidates for such a two-pole structure. Next, I consider in detail the D 0 * ( 2300 ) , which is another candidate for this scenario. Combining lattice QCD with chiral unitary approaches in the finite volume, the precise data of the Hadron Spectrum Collaboration for coupled-channel D π , D η , D s K ¯ scattering in the isospin I = 1 / 2 channel indeed reveal its two-pole structure. Further states in the heavy meson sector with I = 1 / 2 exhibiting this phenomenon are predicted, especially in the beauty meson sector. I also discuss the relation of these two-pole structures and the possible molecular nature of the states under consideration. Full article
(This article belongs to the Special Issue Chiral Symmetry in Physics)
Show Figures

Figure 1

15 pages, 1187 KiB  
Article
On the Analytical and Numerical Study of a Two-Dimensional Nonlinear Heat Equation with a Source Term
by Alexander Kazakov, Lev Spevak, Olga Nefedova and Anna Lempert
Symmetry 2020, 12(6), 921; https://doi.org/10.3390/sym12060921 - 2 Jun 2020
Cited by 13 | Viewed by 2583
Abstract
The paper deals with two-dimensional boundary-value problems for the degenerate nonlinear parabolic equation with a source term, which describes the process of heat conduction in the case of the power-law temperature dependence of the heat conductivity coefficient. We consider a heat wave propagation [...] Read more.
The paper deals with two-dimensional boundary-value problems for the degenerate nonlinear parabolic equation with a source term, which describes the process of heat conduction in the case of the power-law temperature dependence of the heat conductivity coefficient. We consider a heat wave propagation problem with a specified zero front in the case of two spatial variables. The solution existence and uniqueness theorem is proved in the class of analytic functions. The solution is constructed as a power series with coefficients to be calculated by a proposed constructive recurrent procedure. An algorithm based on the boundary element method using the dual reciprocity method is developed to solve the problem numerically. The efficiency of the application of the dual reciprocity method for various systems of radial basis functions is analyzed. An approach to constructing invariant solutions of the problem in the case of central symmetry is proposed. The constructed solutions are used to verify the developed numerical algorithm. The test calculations have shown the high efficiency of the algorithm. Full article
Show Figures

Figure 1

12 pages, 673 KiB  
Article
Keep a Left Profile, Baby! The Left-Cradling Bias Is Associated with a Preference for Left-Facing Profiles of Human Babies
by Gianluca Malatesta, Daniele Marzoli and Luca Tommasi
Symmetry 2020, 12(6), 911; https://doi.org/10.3390/sym12060911 - 1 Jun 2020
Cited by 16 | Viewed by 6471
Abstract
The left-cradling bias (LCB) refers to the (typically female) preference to hold an infant on the left side of one’s own body. Among the three main accounts proposed for such a phenomenon, namely the “handedness”, “heartbeat” and “hemispheric asymmetry” hypotheses, the latter has [...] Read more.
The left-cradling bias (LCB) refers to the (typically female) preference to hold an infant on the left side of one’s own body. Among the three main accounts proposed for such a phenomenon, namely the “handedness”, “heartbeat” and “hemispheric asymmetry” hypotheses, the latter has met with the greatest empirical success. Accordingly, the LCB would facilitate the communication of socio-emotional information through the right hemisphere of both the cradled and the cradling individual, and should emerge mainly in face-to-face interactions. In this regard, it should be noticed that when the infant’s body is oriented toward the cradler, the left or right side of their face is relatively more visible to left- and right-cradlers, respectively. Therefore, we hypothesized that the LCB might also be associated with a preference for left-facing profiles (i.e., those showing the left, and more expressive, hemiface/cheek) of human babies. In order to test our hypothesis, we assessed the cradling-side preferences of female participants, as well as their preference for the left- or right-facing profile of a human infant depicted in a drawing. Left-cradlers exhibited a significantly larger preference for the left-facing version of the drawing compared with right-cradlers, a finding further corroborating the right-hemisphere hypothesis. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Brain Behavior and Perception)
Show Figures

Graphical abstract

20 pages, 6583 KiB  
Article
Equilibrium of Two-Dimensional Cycloidal Pantographic Metamaterials in Three-Dimensional Deformations
by Daria Scerrato and Ivan Giorgio
Symmetry 2019, 11(12), 1523; https://doi.org/10.3390/sym11121523 - 16 Dec 2019
Cited by 24 | Viewed by 2931
Abstract
A particular pantographic sheet, modeled as a two-dimensional elastic continuum consisting of an orthogonal lattice of continuously distributed fibers with a cycloidal texture, is introduced and investigated. These fibers conceived as embedded beams on the surface are allowed to be deformed in a [...] Read more.
A particular pantographic sheet, modeled as a two-dimensional elastic continuum consisting of an orthogonal lattice of continuously distributed fibers with a cycloidal texture, is introduced and investigated. These fibers conceived as embedded beams on the surface are allowed to be deformed in a three-dimensional space and are endowed with resistance to stretching, shearing, bending, and twisting. A finite element analysis directly derived from a variational formulation was performed for some explanatory tests to illustrate the behavior of the newly introduced material. Specifically, we considered tests on: (1) bias extension; (2) compressive; (3) shear; and (4) torsion. The numerical results are discussed to some extent. Finally, attention is drawn to a comparison with other kinds of orthogonal lattices, namely straight, parabolic, and oscillatory, to show the differences in the behavior of the samples due to the diverse arrangements of the fibers. Full article
(This article belongs to the Special Issue Recent Advances in the Study of Symmetry and Continuum Mechanics)
Show Figures

Figure 1

24 pages, 416 KiB  
Article
Exact Spherically Symmetric Solutions in Modified Teleparallel Gravity
by Sebastian Bahamonde and Ugur Camci
Symmetry 2019, 11(12), 1462; https://doi.org/10.3390/sym11121462 - 28 Nov 2019
Cited by 34 | Viewed by 3230
Abstract
Finding spherically symmetric exact solutions in modified gravity is usually a difficult task. In this paper, we use Noether symmetry approach for a modified teleparallel theory of gravity labeled as f ( T , B ) gravity where T is the scalar torsion [...] Read more.
Finding spherically symmetric exact solutions in modified gravity is usually a difficult task. In this paper, we use Noether symmetry approach for a modified teleparallel theory of gravity labeled as f ( T , B ) gravity where T is the scalar torsion and B the boundary term. Using Noether theorem, we were able to find exact spherically symmetric solutions for different forms of the function f ( T , B ) coming from Noether symmetries. Full article
(This article belongs to the Special Issue Noether’s Symmetry Approach in Gravity and Cosmology)
10 pages, 2322 KiB  
Article
Short vs. Standard Length Cone Morse Connection Implants: An In Vitro Pilot Study in Low Density Polyurethane Foam
by Luca Comuzzi, Margherita Tumedei, Adriano Piattelli and Giovanna Iezzi
Symmetry 2019, 11(11), 1349; https://doi.org/10.3390/sym11111349 - 1 Nov 2019
Cited by 21 | Viewed by 2776
Abstract
The aim of the investigation was to evaluate the insertion torque, pull-out torque and implant stability quotient (ISQ) of short implants (SI) and standard length implants (ST) inserted into linearly elastic and constitutive isotropic symmetry polyurethane foam blocks. Short dental titanium implants with [...] Read more.
The aim of the investigation was to evaluate the insertion torque, pull-out torque and implant stability quotient (ISQ) of short implants (SI) and standard length implants (ST) inserted into linearly elastic and constitutive isotropic symmetry polyurethane foam blocks. Short dental titanium implants with a Cone Morse connection and a conical shape (test implants: Test Implant A—diameter 5.5 mm and length 6 mm) (Test Implant B—diameter 5.5 mm and length 5 mm) were used for the present in vitro investigation. ST implants (4 mm diameter and 10 mm length), with a Cone Morse connection and a conical shape, were used as Control Implant A and as Control Implants B. These two latter implants had a different macro design. A total of 20 implants (5 Test A, 5 Test B, 5 Control A and 5 Control B) were used for the present research. The results were similar when comparing the Test A and Test B implants. The test implants had very good stability in polyurethane 14.88–29.76 kgm3 density blocks. The insertion torque values were very high for both types of test implant (25–32 Ncm on 14.88 kgm blocks, and up to 45 Ncm in 29.76 kgm3 blocks). The pull-out test values were very similar to the insertion torque values. The ISQ values were significantly high with 75–80 in 14.88 kgm3 blocks, and 78–83 in 29.76 kgm3 blocks. No differences were found in the values of the Control A and Control B implants. In both these implants, the insertion torque was quite low in the 14.88 kgm3 blocks (16–28 Ncm). Better results were found in the 29.76 kgm3 blocks. The pull-out values for these control implants were slightly lower than the insertion torque values. High ISQ values were found in both control implants (57–80). When comparing SI and ST implants, the SI had a similar if not better performance in low quality polyurethane foam blocks (14.88–29.76 kgm), corresponding to D3 and D4 bone. Full article
(This article belongs to the Special Issue Dental Implant Macrogeometry and Biomaterials)
Show Figures

Figure 1

11 pages, 265 KiB  
Article
The Quantum Cosmological Constant
by Stephon Alexander, Joao Magueijo and Lee Smolin
Symmetry 2019, 11(9), 1130; https://doi.org/10.3390/sym11091130 - 5 Sep 2019
Cited by 23 | Viewed by 2899
Abstract
We present an extension of general relativity in which the cosmological constant becomes dynamical and turns out to be conjugate to the Chern–Simons invariant of the Ashtekar connection on a spatial slicing. The latter has been proposed Soo and Smolin as a time [...] Read more.
We present an extension of general relativity in which the cosmological constant becomes dynamical and turns out to be conjugate to the Chern–Simons invariant of the Ashtekar connection on a spatial slicing. The latter has been proposed Soo and Smolin as a time variable for quantum gravity: the Chern–Simons time. In the quantum theory, the inverse cosmological constant and Chern–Simons time will then become conjugate operators. The “Kodama state” gets a new interpretation as a family of transition functions. These results imply an uncertainty relation between Λ and Chern–Simons time; the consequences of which will be discussed elsewhere. Full article
(This article belongs to the Special Issue Modified Theories of Gravity)
16 pages, 5124 KiB  
Perspective
Optical Helicity and Optical Chirality in Free Space and in the Presence of Matter
by Lisa V. Poulikakos, Jennifer A. Dionne and Aitzol García-Etxarri
Symmetry 2019, 11(9), 1113; https://doi.org/10.3390/sym11091113 - 3 Sep 2019
Cited by 42 | Viewed by 6630
Abstract
The inherently weak nature of chiral light–matter interactions can be enhanced by orders of magnitude utilizing artificially-engineered nanophotonic structures. These structures enable high spatial concentration of electromagnetic fields with controlled helicity and chirality. However, the effective design and optimization of nanostructures requires defining [...] Read more.
The inherently weak nature of chiral light–matter interactions can be enhanced by orders of magnitude utilizing artificially-engineered nanophotonic structures. These structures enable high spatial concentration of electromagnetic fields with controlled helicity and chirality. However, the effective design and optimization of nanostructures requires defining physical observables which quantify the degree of electromagnetic helicity and chirality. In this perspective, we discuss optical helicity, optical chirality, and their related conservation laws, describing situations in which each provides the most meaningful physical information in free space and in the context of chiral light–matter interactions. First, an instructive comparison is drawn to the concepts of momentum, force, and energy in classical mechanics. In free space, optical helicity closely parallels momentum, whereas optical chirality parallels force. In the presence of macroscopic matter, the optical helicity finds its optimal physical application in the case of lossless, dual-symmetric media, while, in contrast, the optical chirality provides physically observable information in the presence of lossy, dispersive media. Finally, based on numerical simulations of a gold and silicon nanosphere, we discuss how metallic and dielectric nanostructures can generate chiral electromagnetic fields upon interaction with chiral light, offering guidelines for the rational design of nanostructure-enhanced electromagnetic chirality. Full article
(This article belongs to the Special Issue Duality Symmetry)
Show Figures

Graphical abstract

14 pages, 331 KiB  
Article
Forecasting Efficient Risk/Return Frontier for Equity Risk with a KTAP Approach—A Case Study in Milan Stock Exchange
by Marina Dolfin, Leone Leonida and Eleonora Muzzupappa
Symmetry 2019, 11(8), 1055; https://doi.org/10.3390/sym11081055 - 16 Aug 2019
Cited by 10 | Viewed by 4733
Abstract
We introduce and discuss a dynamics of interaction of risky assets in a portfolio by resorting to methods of statistical mechanics developed to model the evolution of systems whose microscopic state may be augmented by variables which are not mechanical. Statistical methods are [...] Read more.
We introduce and discuss a dynamics of interaction of risky assets in a portfolio by resorting to methods of statistical mechanics developed to model the evolution of systems whose microscopic state may be augmented by variables which are not mechanical. Statistical methods are applied in the present paper in order to forecast the dynamics of risk/return efficient frontier for equity risk. Specifically, we adopt the methodologies of the kinetic theory for active particles (KTAP) with stochastic game-type interactions and apply the proposed model to a case study analyzing a subset of stocks traded in Milan Stock Exchange. In particular, we evaluate the efficient risk/return frontier within the mean/variance portfolio optimization theory for 13 principal components of the Milan Stock Exchange and apply the proposed kinetic model to forecast its short-term evolution (within one year). The model has the aim to pave the way to many different research perspectives and applications discussed eventually in the paper. In particular, the case of efficient frontier obtained by minimizing the Conditional Value-at-Risk (CVaR) is introduced and a preliminary result is proposed. Full article
Show Figures

Figure 1

24 pages, 1651 KiB  
Article
Revisiting a Negative Cosmological Constant from Low-Redshift Data
by Luca Visinelli, Sunny Vagnozzi and Ulf Danielsson
Symmetry 2019, 11(8), 1035; https://doi.org/10.3390/sym11081035 - 10 Aug 2019
Cited by 128 | Viewed by 4849
Abstract
Persisting tensions between high-redshift and low-redshift cosmological observations suggest the dark energy sector of the Universe might be more complex than the positive cosmological constant of the Λ CDM model. Motivated by string theory, wherein symmetry considerations make consistent AdS backgrounds (i.e., maximally-symmetric [...] Read more.
Persisting tensions between high-redshift and low-redshift cosmological observations suggest the dark energy sector of the Universe might be more complex than the positive cosmological constant of the Λ CDM model. Motivated by string theory, wherein symmetry considerations make consistent AdS backgrounds (i.e., maximally-symmetric spacetimes with a negative cosmological constant) ubiquitous, we explore a scenario where the dark energy sector consists of two components: a negative cosmological constant, with a dark energy component with equation of state w ϕ on top. We test the consistency of the model against low-redshift baryon acoustic oscillation and Type Ia supernovae distance measurements, assessing two alternative choices of distance anchors: the sound horizon at baryon drag determined by the Planck collaboration and the Hubble constant determined by the SH0ES program. We find no evidence for a negative cosmological constant and mild indications for an effective phantom dark energy component on top. A model comparison analysis reveals that the Λ CDM model is favoured over our negative cosmological constant model. While our results are inconclusive, should low-redshift tensions persist with future data, it would be worth reconsidering and further refining our toy negative cosmological constant model by considering realistic string constructions. Full article
(This article belongs to the Special Issue Anomalies and Tensions of the Cosmic Microwave Background)
8 pages, 549 KiB  
Communication
The Eigenproblem Translated for Alignment of Molecules
by Lorentz Jäntschi
Symmetry 2019, 11(8), 1027; https://doi.org/10.3390/sym11081027 - 9 Aug 2019
Cited by 40 | Viewed by 3165
Abstract
Molecular conformation as a subproblem of the geometrical shaping of the molecules is essential for the expression of biological activity. It is well known that from the series of all possible sugars, those that are most naturally occurring and usable by living organisms [...] Read more.
Molecular conformation as a subproblem of the geometrical shaping of the molecules is essential for the expression of biological activity. It is well known that from the series of all possible sugars, those that are most naturally occurring and usable by living organisms as a source of energy—because they can be phosphorylated by hexokinase, the first enzyme in the glycolysis pathway—are D-sugars (from the Latin dextro). Furthermore, the most naturally occurring amino acids in living cells are L-sugars (from the Latin laevo). However, a problem arises in dealing with the comparison of their conformers. One alternative way to compare sugars is via their molecular alignment. Here, a solution to the eigenproblem of molecular alignment is communicated. The Cartesian system is rotated, and eventually translated and reflected until the molecule arrives in a position characterized by the highest absolute values of the eigenvalues observed on the Cartesian coordinates. The rotation alone can provide eight alternate positions relative to the reflexes of each coordinate. Full article
(This article belongs to the Special Issue Applied Designs in Chemical Structures with High Symmetry)
Show Figures

Figure 1

15 pages, 396 KiB  
Article
Diffusive and Anti-Diffusive Behavior for Kinetic Models of Opinion Dynamics
by Mirosław Lachowicz, Henryk Leszczyński and Elżbieta Puźniakowska–Gałuch
Symmetry 2019, 11(8), 1024; https://doi.org/10.3390/sym11081024 - 8 Aug 2019
Cited by 14 | Viewed by 3089
Abstract
In the present paper, we study a class of nonlinear integro-differential equations of a kinetic type describing the dynamics of opinion for two types of societies: conformist ( σ = 1 ) and anti-conformist ( σ = 1 ). The essential role [...] Read more.
In the present paper, we study a class of nonlinear integro-differential equations of a kinetic type describing the dynamics of opinion for two types of societies: conformist ( σ = 1 ) and anti-conformist ( σ = 1 ). The essential role is played by the symmetric nature of interactions. The class may be related to the mesoscopic scale of description. This means that we are going to statistically describe an individual state of an agent of the system. We show that the corresponding equations result at the macroscopic scale in two different pictures: anti-diffusive ( σ = 1 ) and diffusive ( σ = 1 ). We provide a rigorous result on the convergence. The result captures the macroscopic behavior resulting from the mesoscopic one. In numerical examples, we observe both unipolar and bipolar behavior known in political sciences. Full article
Show Figures

Figure 1

22 pages, 310 KiB  
Article
Around the Model of Infection Disease: The Cauchy Matrix and Its Properties
by Alexander Domoshnitsky, Irina Volinsky and Marina Bershadsky
Symmetry 2019, 11(8), 1016; https://doi.org/10.3390/sym11081016 - 6 Aug 2019
Cited by 17 | Viewed by 3056
Abstract
In this paper the model of infection diseases by Marchuk is considered. Mathematical questions which are important in its study are discussed. Among them there are stability of stationary points, construction of the Cauchy matrices of linearized models, estimates of solutions. The novelty [...] Read more.
In this paper the model of infection diseases by Marchuk is considered. Mathematical questions which are important in its study are discussed. Among them there are stability of stationary points, construction of the Cauchy matrices of linearized models, estimates of solutions. The novelty we propose is in a distributed feedback control which affects the antibody concentration. We use this control in the form of an integral term and come to the analysis of nonlinear integro-differential systems. New methods for the study of stability of linearized integro–differential systems describing the model of infection diseases are proposed. Explicit conditions of the exponential stability of the stationary points characterizing the state of the healthy body are obtained. The method of the paper is based on the symmetry properties of the Cauchy matrices which allow us their construction. Full article
23 pages, 1789 KiB  
Article
CMB Tensions with Low-Redshift H0 and S8 Measurements: Impact of a Redshift-Dependent Type-Ia Supernovae Intrinsic Luminosity
by Matteo Martinelli and Isaac Tutusaus
Symmetry 2019, 11(8), 986; https://doi.org/10.3390/sym11080986 - 2 Aug 2019
Cited by 52 | Viewed by 4133
Abstract
With the recent increase in precision of our cosmological datasets, measurements of Λ CDM model parameter provided by high- and low-redshift observations started to be in tension, i.e., the obtained values of such parameters were shown to be significantly different in a statistical [...] Read more.
With the recent increase in precision of our cosmological datasets, measurements of Λ CDM model parameter provided by high- and low-redshift observations started to be in tension, i.e., the obtained values of such parameters were shown to be significantly different in a statistical sense. In this work we tackle the tension on the value of the Hubble parameter, H 0 , and the weighted amplitude of matter fluctuations, S 8 , obtained from local or low-redshift measurements and from cosmic microwave background (CMB) observations. We combine the main approaches previously used in the literature by extending the cosmological model and accounting for extra systematic uncertainties. With such analysis we aim at exploring non standard cosmological models, implying deviation from a cosmological constant driven acceleration of the Universe expansion, in the presence of additional uncertainties in measurements. In more detail, we reconstruct the Dark Energy equation of state as a function of redshift, while we study the impact of type-Ia supernovae (SNIa) redshift-dependent astrophysical systematic effects on these tensions. We consider a SNIa intrinsic luminosity dependence on redshift due to the star formation rate in its environment, or the metallicity of the progenitor. We find that the H 0 and S 8 tensions can be significantly alleviated, or even removed, if we account for varying Dark Energy for SNIa and CMB data. However, the tensions remain when we add baryon acoustic oscillations (BAO) data into the analysis, even after the addition of extra SNIa systematic uncertainties. This points towards the need of either new physics beyond late-time Dark Energy, or other unaccounted systematic effects (particulary in BAO measurements), to fully solve the present tensions. Full article
(This article belongs to the Special Issue Anomalies and Tensions of the Cosmic Microwave Background)
Show Figures

Figure 1

14 pages, 248 KiB  
Article
On the Complex Interaction between Collective Learning and Social Dynamics
by Diletta Burini and Silvana De Lillo
Symmetry 2019, 11(8), 967; https://doi.org/10.3390/sym11080967 - 1 Aug 2019
Cited by 21 | Viewed by 2824
Abstract
This paper is motivated by the perspective ideas proposed in our previous studies, where some challenging problems, for instance qualitative analysis of the solution to nonlinear problems and micro-macro asymptotic analysis, where posed. Our work focuses on the study of the interactions between [...] Read more.
This paper is motivated by the perspective ideas proposed in our previous studies, where some challenging problems, for instance qualitative analysis of the solution to nonlinear problems and micro-macro asymptotic analysis, where posed. Our work focuses on the study of the interactions between learning dynamics and other types of dynamics which can be modeled by kinetic theory methods. The contents are presented in three parts. First, a general description of different theories of learning dynamics within the framework of cognitive sciences is critically analyzed with the aim of capturing the main features of the system towards modeling. Subsequently, the class of systems which are the object of the modeling approach is defined by showing how the previous structure can be developed, thanks to new conceptual ideas, including the concept of symmetric and asymmetric learning, towards modeling. Finally, some applications are selected to show how the approach can be methodologically applied. Full article
26 pages, 1096 KiB  
Review
Tight-Binding Modeling of Nucleic Acid Sequences: Interplay between Various Types of Order or Disorder and Charge Transport
by Konstantinos Lambropoulos and Constantinos Simserides
Symmetry 2019, 11(8), 968; https://doi.org/10.3390/sym11080968 - 1 Aug 2019
Cited by 16 | Viewed by 4101
Abstract
This review is devoted to tight-binding (TB) modeling of nucleic acid sequences like DNA and RNA. It addresses how various types of order (periodic, quasiperiodic, fractal) or disorder (diagonal, non-diagonal, random, methylation et cetera) affect charge transport. We include an introduction to TB [...] Read more.
This review is devoted to tight-binding (TB) modeling of nucleic acid sequences like DNA and RNA. It addresses how various types of order (periodic, quasiperiodic, fractal) or disorder (diagonal, non-diagonal, random, methylation et cetera) affect charge transport. We include an introduction to TB and a discussion of its various submodels [wire, ladder, extended ladder, fishbone (wire), fishbone ladder] and of the process of renormalization. We proceed to a discussion of aperiodicity, quasicrystals and the mathematics of aperiodic substitutional sequences: primitive substitutions, Perron–Frobenius eigenvalue, induced substitutions, and Pisot property. We discuss the energy structure of nucleic acid wires, the coupling to the leads, the transmission coefficients and the current–voltage curves. We also summarize efforts aiming to examine the potentiality to utilize the charge transport characteristics of nucleic acids as a tool to probe several diseases or disorders. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Quasicrystals or Amorphous Materials)
Show Figures

Figure 1

19 pages, 1897 KiB  
Article
Smart Contract-Based Pool Hopping Attack Prevention for Blockchain Networks
by Sushil Kumar Singh, Mikail Mohammed Salim, Minjeong Cho, Jeonghun Cha, Yi Pan and Jong Hyuk Park
Symmetry 2019, 11(7), 941; https://doi.org/10.3390/sym11070941 - 19 Jul 2019
Cited by 34 | Viewed by 6016
Abstract
Pool hopping attack is the result of miners leaving the pool when it offers fewer financial rewards and joining back when the rewards of mining yield higher rewards in blockchain networks. This act of leaving and rejoining the pool only during the good [...] Read more.
Pool hopping attack is the result of miners leaving the pool when it offers fewer financial rewards and joining back when the rewards of mining yield higher rewards in blockchain networks. This act of leaving and rejoining the pool only during the good times results in the miner receiving more rewards than the computational power they contribute. Miners exiting the pool deprive it of its collective hash power, which leaves the pool unable to mine the block successfully. This results in its competitors mining the block before they can finish mining. Existing research shows pool hopping resistant measures and detection strategies; however, they do not offer any robust preventive solution to discourage miners from leaving the mining pool. To prevent pool hopping attacks, a smart contract-based pool hopping attack prevention model is proposed. The main objective of our research is maintaining the symmetrical relationship between the miners by requiring them all to continually contribute their computational power to successfully mine a block. We implement a ledger containing records of all miners, in the form of a miner certificate, which tracks the history of the miner’s earlier behavior. The certificate enables a pool manager to better initiate terms of the smart contract, which safeguards the interests of existing mining pool members. The model prevents frequent mine hoppers from pool hopping as they submit coins in the form of an escrow and risk losing them if they abandon the pool before completing mining of the block. The key critical factors that every pool hopping attack prevention solution must address and a study of comparative analysis with existing solutions are presented in the paper. Full article
Show Figures

Figure 1

11 pages, 229 KiB  
Review
Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe
by Jun-ichi Takahashi and Kensei Kobayashi
Symmetry 2019, 11(7), 919; https://doi.org/10.3390/sym11070919 - 15 Jul 2019
Cited by 23 | Viewed by 3462
Abstract
The origin of terrestrial bioorganic homochirality is one of the most important and unresolved problems in the study of chemical evolution prior to the origin of terrestrial life. One hypothesis advocated in the context of astrobiology is that polarized quantum radiation in space, [...] Read more.
The origin of terrestrial bioorganic homochirality is one of the most important and unresolved problems in the study of chemical evolution prior to the origin of terrestrial life. One hypothesis advocated in the context of astrobiology is that polarized quantum radiation in space, such as circularly polarized photons or spin-polarized leptons, induced asymmetric chemical and physical conditions in the primitive interstellar media (the cosmic scenario). Another advocated hypothesis in the context of symmetry breaking in the universe is that the bioorganic asymmetry is intrinsically derived from the chiral asymmetric properties of elementary particles, that is, parity violation in the weak interaction (the intrinsic scenario). In this paper, the features of these two scenarios are discussed and approaches to validate them are reviewed. Full article
(This article belongs to the Special Issue Possible Scenarios for Homochirality on Earth)
11 pages, 4143 KiB  
Article
The Immobilization of Oxindole Derivatives with Use of Cube Rhombellane Homeomorphs
by Przemysław Czeleń and Beata Szefler
Symmetry 2019, 11(7), 900; https://doi.org/10.3390/sym11070900 - 10 Jul 2019
Cited by 8 | Viewed by 2544
Abstract
A key aspect of modern drug research is the development of delivery methods that ensure the possibility of implementing targeted therapy for a specific biological target. The use of nanocarriers enables to achieve this objective, also allowing to reduce the toxicity of used [...] Read more.
A key aspect of modern drug research is the development of delivery methods that ensure the possibility of implementing targeted therapy for a specific biological target. The use of nanocarriers enables to achieve this objective, also allowing to reduce the toxicity of used substances and often extending their bioavailability. Through the application of docking methods, the possibility of using cube rhombellanes as potential carriers for two oxindole derivatives was analyzed. In the studies, compounds identified as inhibitors of the CDK2 enzyme and a set of nanostructures proposed by the Topo Cluj Group were used. The popular fullerene molecule C60 was used as the reference system. The estimated binding affinities and structures of obtained complexes show that use of functionalized cube rhombellanes containing hydrogen bond donors and acceptors in their external molecular shell significantly increases ligand affinity toward considered nanocariers, compared to classic fullerenes. The presented values also allow to state that an important factor determining the mutual affinity of the tested ligands and nanostructures is the symmetry of the analyzed nanocarriers and its influence on the distribution of binding groups (aromatic systems, donors and acceptors of hydrogen bonds) on the surface of nanoparticles. Full article
(This article belongs to the Special Issue Applied Designs in Chemical Structures with High Symmetry)
Show Figures

Figure 1

11 pages, 3127 KiB  
Article
Docking of Cisplatin on Fullerene Derivatives and Some Cube Rhombellane Functionalized Homeomorphs
by Beata Szefler and Przemysław Czeleń
Symmetry 2019, 11(7), 874; https://doi.org/10.3390/sym11070874 - 3 Jul 2019
Cited by 9 | Viewed by 3131
Abstract
Cisplatin (cisPt) is one of the strongest anticancer agents with proven clinical activity against a wide range of solid tumors. Its mode of action has been linked to its ability to crosslink with the canonical purine bases, primarily with guanine. Theoretical studies performed [...] Read more.
Cisplatin (cisPt) is one of the strongest anticancer agents with proven clinical activity against a wide range of solid tumors. Its mode of action has been linked to its ability to crosslink with the canonical purine bases, primarily with guanine. Theoretical studies performed at the molecular level suggest that such nonspecific interactions can also take place with many competitive compounds, such as vitamins of the B group, containing aromatic rings with lone-pair orbitals. This might be an indicator of reduction of the anticancer therapeutic effects of the Cisplatin drug in the presence of vitamins of the B group inside the cell nucleus. That is why it seems to be important to connect CisPt with nanostructures and in this way prevent the drug from combining with the B vitamins. As a proposal for a new nanodrug, an attempt was made to implement Cispaltin (CisPt) ligand on functionalized C60 fullerenes and on a cube rhombellane homeomorphic surface. The symmetry of the analyzed nanostructures is an important factor determining the mutual affinity of the tested ligand and nanocarriers. The behavior of Cisplatin with respect to rhombellane homeomorphs and functionalized fullerenes C60, in terms of their (interacting) energy, geometry and topology was studied and a detailed analysis of structural properties after docking showed many interesting features. Full article
(This article belongs to the Special Issue Applied Designs in Chemical Structures with High Symmetry)
Show Figures

Figure 1

16 pages, 326 KiB  
Article
On the Partition of Energies for the Backward in Time Problem of Thermoelastic Materials with a Dipolar Structure
by M. Marin, S. Vlase, R. Ellahi and M.M. Bhatti
Symmetry 2019, 11(7), 863; https://doi.org/10.3390/sym11070863 - 2 Jul 2019
Cited by 116 | Viewed by 3654
Abstract
We first formulate the mixed backward in time problem in the context of thermoelasticity for dipolar materials. To prove the consistency of this mixed problem, our first main result is regarding the uniqueness of the solution for this problem. This is obtained based [...] Read more.
We first formulate the mixed backward in time problem in the context of thermoelasticity for dipolar materials. To prove the consistency of this mixed problem, our first main result is regarding the uniqueness of the solution for this problem. This is obtained based on some auxiliary results, namely, four integral identities. The second main result is regarding the temporal behavior of our thermoelastic body with a dipolar structure. This behavior is studied by means of some relations on a partition of various parts of the energy associated to the solution of the problem. Full article
(This article belongs to the Special Issue Symmetry in Applied Continuous Mechanics)
15 pages, 2365 KiB  
Article
A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the Data Being Tested
by Lorentz Jäntschi
Symmetry 2019, 11(6), 835; https://doi.org/10.3390/sym11060835 - 25 Jun 2019
Cited by 39 | Viewed by 7084
Abstract
One of the pillars of experimental science is sampling. Based on the analysis of samples, estimations for populations are made. There is an entire science based on sampling. Distribution of the population, of the sample, and the connection among those two (including sampling [...] Read more.
One of the pillars of experimental science is sampling. Based on the analysis of samples, estimations for populations are made. There is an entire science based on sampling. Distribution of the population, of the sample, and the connection among those two (including sampling distribution) provides rich information for any estimation to be made. Distributions are split into two main groups: continuous and discrete. The present study applies to continuous distributions. One of the challenges of sampling is its accuracy, or, in other words, how representative the sample is of the population from which it was drawn. To answer this question, a series of statistics have been developed to measure the agreement between the theoretical (the population) and observed (the sample) distributions. Another challenge, connected to this, is the presence of outliers - regarded here as observations wrongly collected, that is, not belonging to the population subjected to study. To detect outliers, a series of tests have been proposed, but mainly for normal (Gauss) distributions—the most frequently encountered distribution. The present study proposes a statistic (and a test) intended to be used for any continuous distribution to detect outliers by constructing the confidence interval for the extreme value in the sample, at a certain (preselected) risk of being in error, and depending on the sample size. The proposed statistic is operational for known distributions (with a known probability density function) and is also dependent on the statistical parameters of the population—here it is discussed in connection with estimating those parameters by the maximum likelihood estimation method operating on a uniform U(0,1) continuous symmetrical distribution. Full article
(This article belongs to the Special Issue Symmetry in Applied Mathematics)
Show Figures

Figure 1

16 pages, 1724 KiB  
Concept Paper
Chemical Basis of Biological Homochirality during the Abiotic Evolution Stages on Earth
by Josep M. Ribó and David Hochberg
Symmetry 2019, 11(6), 814; https://doi.org/10.3390/sym11060814 - 20 Jun 2019
Cited by 19 | Viewed by 3932
Abstract
Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that [...] Read more.
Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios. Full article
(This article belongs to the Special Issue Possible Scenarios for Homochirality on Earth)
Show Figures

Figure 1

13 pages, 1568 KiB  
Article
Framework for Onboard Bus Comfort Level Predictions Using the Markov Chain Concept
by Paweł Więcek, Daniel Kubek, Jan Hipolit Aleksandrowicz and Aleksandra Stróżek
Symmetry 2019, 11(6), 755; https://doi.org/10.3390/sym11060755 - 4 Jun 2019
Cited by 13 | Viewed by 3738
Abstract
Efficiently functioning public transport has a significant positive impact on the entire transportation system performance through numerous aspects, such as the reduction of congestion, energy consumption, and emissions. In most cases, the basic elements of public transport are the bus transport subsystem. Currently, [...] Read more.
Efficiently functioning public transport has a significant positive impact on the entire transportation system performance through numerous aspects, such as the reduction of congestion, energy consumption, and emissions. In most cases, the basic elements of public transport are the bus transport subsystem. Currently, in addition to criteria such as punctuality, the frequency of departures, and the number of transfers, a travelling comfort level is an important element for passengers. An overcrowded bus may discourage travelers from choosing this mode of transport and induce them to use a private car despite the existence of many other facilities offered by a given public transport system. Therefore, the forecasting of bus passenger demand, as well as bus occupancy at individual bus stops, is currently an important research direction. The main goal of the article is to present the conceptual framework for the Advanced Travel Information System with the prediction module. The proposed approach assumes that the prediction module is based on the use of the Markov Chain concept. The efficiency and accuracy of the obtained prediction were presented based on a real-life example, where the measurements of passengers boarding and alighting at bus stops were made in a selected Cracow bus line. The methodology presented in the paper and the obtained results can significantly contribute to the development of solutions and systems for a better management as well as a cost and energy consumption optimisation in the public transport system. Current and forecasted information related to bus occupancy, when properly used in the travel information system, may have a positive impact on the development of urban mobility patterns by encouraging the use of public transport. This article addresses the current and practical research problem using an adequate theoretical mathematical tool to describe it, reflecting the characteristics and nature of the phenomenon being studied. To the best of the authors’ knowledge, the article deals for the first time with the problem of prediction of onboard bus comfort levels based on in-vehicle occupancy. Full article
(This article belongs to the Special Issue Symmetry in Mathematical Analysis and Applications)
Show Figures

Figure 1

20 pages, 3398 KiB  
Review
Role of Asymmetric Autocatalysis in the Elucidation of Origins of Homochirality of Organic Compounds
by Kenso Soai, Tsuneomi Kawasaki and Arimasa Matsumoto
Symmetry 2019, 11(5), 694; https://doi.org/10.3390/sym11050694 - 20 May 2019
Cited by 24 | Viewed by 4989
Abstract
Pyrimidyl alkanol and related compounds were found to be asymmetric autocatalysts in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde and related aldehydes. In the asymmetric autocatalysis with amplification of enantiomeric excess (ee), the very low ee (ca. 0.00005%) of 2-alkynyl-5-pyrimidyl alkanol was significantly [...] Read more.
Pyrimidyl alkanol and related compounds were found to be asymmetric autocatalysts in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde and related aldehydes. In the asymmetric autocatalysis with amplification of enantiomeric excess (ee), the very low ee (ca. 0.00005%) of 2-alkynyl-5-pyrimidyl alkanol was significantly amplified to >99.5% ee with an increase in the amount. By using asymmetric autocatalysis with amplification of ee, several origins of homochirality have been examined. Circularly polarized light, chiral quartz, and chiral crystals formed from achiral organic compounds such as glycine and carbon (13C/12C), nitrogen (15N/14N), oxygen (18O/16O), and hydrogen (D/H) chiral isotopomers were found to act as the origin of chirality in asymmetric autocatalysis. And the spontaneous absolute asymmetric synthesis was also realized without the intervention of any chiral factor. Full article
(This article belongs to the Special Issue Possible Scenarios for Homochirality on Earth)
Show Figures

Figure 1

20 pages, 256 KiB  
Article
Conservation Laws and Stability of Field Theories of Derived Type
by Dmitry S. Kaparulin
Symmetry 2019, 11(5), 642; https://doi.org/10.3390/sym11050642 - 7 May 2019
Cited by 12 | Viewed by 2124
Abstract
We consider the issue of correspondence between symmetries and conserved quantities in the class of linear relativistic higher-derivative theories of derived type. In this class of models the wave operator is a polynomial in another formally self-adjoint operator, while each isometry of space-time [...] Read more.
We consider the issue of correspondence between symmetries and conserved quantities in the class of linear relativistic higher-derivative theories of derived type. In this class of models the wave operator is a polynomial in another formally self-adjoint operator, while each isometry of space-time gives rise to the series of symmetries of action functional. If the wave operator is given by n-th-order polynomial then this series includes n independent entries, which can be explicitly constructed. The Noether theorem is then used to construct an n-parameter set of second-rank conserved tensors. The canonical energy-momentum tensor is included in the series, while the other entries define independent integrals of motion. The Lagrange anchor concept is applied to connect the general conserved tensor in the series with the original space-time translation symmetry. This result is interpreted as existence of multiple energy-momentum tensors in the class of derived systems. To study stability we seek for bounded-conserved quantities that are connected with the time translations. We observe that the derived theory is stable if its wave operator is defined by a polynomial with simple and real roots. The general constructions are illustrated by the examples of the Pais–Uhlenbeck oscillator, higher-derivative scalar field, and extended Chern–Simons theory. Full article
(This article belongs to the Special Issue Noether's Theorem and Symmetry)
14 pages, 281 KiB  
Article
Identities of Symmetry for Type 2 Bernoulli and Euler Polynomials
by Dae San Kim, Han Young Kim, Dojin Kim and Taekyun Kim
Symmetry 2019, 11(5), 613; https://doi.org/10.3390/sym11050613 - 2 May 2019
Cited by 16 | Viewed by 2305
Abstract
The main purpose of this paper is to give several identities of symmetry for type 2 Bernoulli and Euler polynomials by considering certain quotients of bosonic p-adic and fermionic p-adic integrals on Z p , where p is an odd prime [...] Read more.
The main purpose of this paper is to give several identities of symmetry for type 2 Bernoulli and Euler polynomials by considering certain quotients of bosonic p-adic and fermionic p-adic integrals on Z p , where p is an odd prime number. Indeed, they are symmetric identities involving type 2 Bernoulli polynomials and power sums of consecutive odd positive integers, and the ones involving type 2 Euler polynomials and alternating power sums of odd positive integers. Furthermore, we consider two random variables created from random variables having Laplace distributions and show their moments are given in terms of the type 2 Bernoulli and Euler numbers. Full article
(This article belongs to the Special Issue Current Trends in Symmetric Polynomials with Their Applications Ⅱ)
16 pages, 4383 KiB  
Article
The Hay Inclined Plane in Coalbrookdale (Shropshire, England): Geometric Modeling and Virtual Reconstruction
by José Ignacio Rojas-Sola and Eduardo De la Morena-De la Fuente
Symmetry 2019, 11(4), 589; https://doi.org/10.3390/sym11040589 - 24 Apr 2019
Cited by 17 | Viewed by 3608
Abstract
This article shows the geometric modeling and virtual reconstruction of the inclined plane of Coalbrookdale (Shropshire, England) that was in operation from 1792 to 1894. This historical invention, work of the Englishman William Reynolds, allowed the transportation of boats through channels located at [...] Read more.
This article shows the geometric modeling and virtual reconstruction of the inclined plane of Coalbrookdale (Shropshire, England) that was in operation from 1792 to 1894. This historical invention, work of the Englishman William Reynolds, allowed the transportation of boats through channels located at different levels. Autodesk Inventor Professional software has been used to obtain the 3D CAD model of this historical invention and its geometric documentation. The material for the research is available on the website of the Betancourt Project of the Canary Orotava Foundation for the History of Science. Also, because the single sheet does not have a scale, it has been necessary to adopt a graphic scale so that the dimensions of the different elements are coherent. Furthermore, it has been necessary to establish some dimensional, geometric, and movement restrictions (degrees of freedom) so that the set will work properly. One of the main conclusions is that William Reynolds designed a mechanism seeking a longitudinal symmetry so that, from a single continuous movement, the mechanism allows two vessels to ascend and descend simultaneously. This engineering solution facilitated a doubling of the working capacity of the device, as well as a reduction of the energy needs of the system. Full article
(This article belongs to the Special Issue Symmetry in Engineering Sciences)
Show Figures

Figure 1

46 pages, 594 KiB  
Article
Hadronic and Hadron-Like Physics of Dark Matter
by Vitaly Beylin, Maxim Yu. Khlopov, Vladimir Kuksa and Nikolay Volchanskiy
Symmetry 2019, 11(4), 587; https://doi.org/10.3390/sym11040587 - 23 Apr 2019
Cited by 28 | Viewed by 3742
Abstract
The problems of simple elementary weakly interacting massive particles (WIMPs) appeal to extend the physical basis for nonbaryonic dark matter. Such extension involves more sophisticated dark matter candidates from physics beyond the Standard Model (BSM) of elementary particles. We discuss several models of [...] Read more.
The problems of simple elementary weakly interacting massive particles (WIMPs) appeal to extend the physical basis for nonbaryonic dark matter. Such extension involves more sophisticated dark matter candidates from physics beyond the Standard Model (BSM) of elementary particles. We discuss several models of dark matter, predicting new colored, hyper-colored or techni-colored particles and their accelerator and non-accelerator probes. The nontrivial properties of the proposed dark matter candidates can shed new light on the dark matter physics. They provide interesting solutions for the puzzles of direct and indirect dark matter search. Full article
(This article belongs to the Special Issue Cosmological Inflation, Dark Matter and Dark Energy)
8 pages, 4083 KiB  
Article
Fully Metallic Flat Lens Based on Locally Twist-Symmetric Array of Complementary Split-Ring Resonators
by Oskar Dahlberg, Guido Valerio and Oscar Quevedo-Teruel
Symmetry 2019, 11(4), 581; https://doi.org/10.3390/sym11040581 - 22 Apr 2019
Cited by 16 | Viewed by 4095
Abstract
In this article, we demonstrate how twist symmetries can be employed in the design of flat lenses. A lens design is proposed, consisting of 13 perforated metallic sheets separated by an air gap. The perforation in the metal is a two-dimensional array of [...] Read more.
In this article, we demonstrate how twist symmetries can be employed in the design of flat lenses. A lens design is proposed, consisting of 13 perforated metallic sheets separated by an air gap. The perforation in the metal is a two-dimensional array of complementary split-ring resonators. In this specific design, the twist symmetry is local, as it is only applied to the unit cell of the array. Moreover, the twist symmetry is an approximation, as it is only applied to part of the unit cell. First, we demonstrate that, by varying the order of twist symmetry, the phase delay experienced by a wave propagating through the array can be accurately controlled. Secondly, a lens is designed by tailoring the unit cells throughout the aperture of the lens in order to obtain the desired phase delay. Simulation and measurement results demonstrate that the lens successfully transforms a spherical wave emanating from the focal point into a plane wave at the opposite side of the lens. The demonstrated concepts find application in future wireless communication networks where fully-metallic directive antennas are desired. Full article
Show Figures

Figure 1

14 pages, 659 KiB  
Article
A Scalable and Hybrid Intrusion Detection System Based on the Convolutional-LSTM Network
by Muhammad Ashfaq Khan, Md. Rezaul Karim and Yangwoo Kim
Symmetry 2019, 11(4), 583; https://doi.org/10.3390/sym11040583 - 22 Apr 2019
Cited by 117 | Viewed by 12685
Abstract
With the rapid advancements of ubiquitous information and communication technologies, a large number of trustworthy online systems and services have been deployed. However, cybersecurity threats are still mounting. An intrusion detection (ID) system can play a significant role in detecting such security threats. [...] Read more.
With the rapid advancements of ubiquitous information and communication technologies, a large number of trustworthy online systems and services have been deployed. However, cybersecurity threats are still mounting. An intrusion detection (ID) system can play a significant role in detecting such security threats. Thus, developing an intelligent and accurate ID system is a non-trivial research problem. Existing ID systems that are typically used in traditional network intrusion detection system often fail and cannot detect many known and new security threats, largely because those approaches are based on classical machine learning methods that provide less focus on accurate feature selection and classification. Consequently, many known signatures from the attack traffic remain unidentifiable and become latent. Furthermore, since a massive network infrastructure can produce large-scale data, these approaches often fail to handle them flexibly, hence are not scalable. To address these issues and improve the accuracy and scalability, we propose a scalable and hybrid IDS, which is based on Spark ML and the convolutional-LSTM (Conv-LSTM) network. This IDS is a two-stage ID system: the first stage employs the anomaly detection module, which is based on Spark ML. The second stage acts as a misuse detection module, which is based on the Conv-LSTM network, such that both global and local latent threat signatures can be addressed. Evaluations of several baseline models in the ISCX-UNB dataset show that our hybrid IDS can identify network misuses accurately in 97.29% of cases and outperforms state-of-the-art approaches during 10-fold cross-validation tests. Full article
(This article belongs to the Special Issue Symmetry-Adapted Machine Learning for Information Security)
Show Figures

Graphical abstract

22 pages, 349 KiB  
Article
Imaginary Chemical Potential, NJL-Type Model and Confinement–Deconfinement Transition
by Kouji Kashiwa
Symmetry 2019, 11(4), 562; https://doi.org/10.3390/sym11040562 - 18 Apr 2019
Cited by 13 | Viewed by 3014
Abstract
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss [...] Read more.
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss periodicity and the transition. We summarize how these properties play a crucial role in understanding QCD properties at finite temperature and density. This review covers several topics in the investigation of the QCD phase diagram based on the imaginary chemical potential. Full article
(This article belongs to the Special Issue Nambu-Jona-Lasinio model and its applications)
Show Figures

Figure 1

10 pages, 238 KiB  
Article
Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients
by Constantin Buşe, Donal O’Regan and Olivia Saierli
Symmetry 2019, 11(4), 512; https://doi.org/10.3390/sym11040512 - 9 Apr 2019
Cited by 12 | Viewed by 2050
Abstract
Let q 2 be a positive integer and let ( a j ) , ( b j ) , and ( c j ) (with j a non-negative integer) be three given C -valued and q-periodic sequences. Let [...] Read more.
Let q 2 be a positive integer and let ( a j ) , ( b j ) , and ( c j ) (with j a non-negative integer) be three given C -valued and q-periodic sequences. Let A ( q ) : = A q 1 A 0 , where A j is as is given below. Assuming that the “monodromy matrix” A ( q ) has at least one multiple eigenvalue, we prove that the linear scalar recurrence x n + 3 = a n x n + 2 + b n x n + 1 + c n x n , n Z + is Hyers-Ulam stable if and only if the spectrum of A ( q ) does not intersect the unit circle Γ : = { w C : | w | = 1 } . Connecting this result with a recently obtained one it follows that the above linear recurrence is Hyers-Ulam stable if and only if the spectrum of A ( q ) does not intersect the unit circle. Full article
(This article belongs to the Special Issue Nonlinear, Convex, Nonsmooth, Functional Analysis in Symmetry)
18 pages, 409 KiB  
Review
Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales
by Sergei V. Ketov and Maxim Yu. Khlopov
Symmetry 2019, 11(4), 511; https://doi.org/10.3390/sym11040511 - 9 Apr 2019
Cited by 39 | Viewed by 3444
Abstract
The lack of positive results in searches for supersymmetric (SUSY) particles at the Large Hadron Collider (LHC) and in direct searches for Weakly Interacting Massive Particles (WIMPs) in the underground experiments may hint to a super-high energy scale of SUSY phenomena beyond the [...] Read more.
The lack of positive results in searches for supersymmetric (SUSY) particles at the Large Hadron Collider (LHC) and in direct searches for Weakly Interacting Massive Particles (WIMPs) in the underground experiments may hint to a super-high energy scale of SUSY phenomena beyond the reach of direct experimental probes. At such scales the supergravity models based on Starobinsky inflation can provide the mechanisms for both inflation and superheavy dark matter. However, it makes the indirect methods the only way of testing the SUSY models, so that cosmological probes acquire the special role in this context. Such probes can rely on the nontrivial effects of SUSY physics in the early Universe, which are all model-dependent and thus can provide discrimination of the models and their parameters. The nonstandard cosmological features like Primordial Black Holes (PBHs) or antimatter domains in a baryon-asymmetric universe are discussed as possible probes for high energy scale SUSY physics. Full article
(This article belongs to the Special Issue Supersymmetric Field Theory 2018)
Show Figures

Figure 1

31 pages, 1579 KiB  
Article
Phase Diagram, Scalar-Pseudoscalar Meson Behavior and Restoration of Symmetries in (2 + 1) Polyakov-Nambu-Jona-Lasinio Model
by Pedro Costa and Renan Pereira
Symmetry 2019, 11(4), 507; https://doi.org/10.3390/sym11040507 - 8 Apr 2019
Cited by 11 | Viewed by 3046
Abstract
We explore the phase diagram and the modification of mesonic observables in a hot and dense medium using the (2 + 1) Polyakov-Nambu-Jona-Lasinio model. We present the phase diagram in the ( T , μ B ) -plane, with its isentropic trajectories, paying [...] Read more.
We explore the phase diagram and the modification of mesonic observables in a hot and dense medium using the (2 + 1) Polyakov-Nambu-Jona-Lasinio model. We present the phase diagram in the ( T , μ B ) -plane, with its isentropic trajectories, paying special attention to the chiral critical end point (CEP). Chiral and deconfinement transitions are examined. The modifications of mesonic observables in the medium are explored as a tool to analyze the effective restoration of chiral symmetry for different regions of the phase diagram. It is shown that the meson masses, namely that of the kaons, change abruptly near the CEP, which can be relevant for its experimental search. Full article
(This article belongs to the Special Issue Nambu-Jona-Lasinio model and its applications)
Show Figures

Figure 1

8 pages, 796 KiB  
Article
Time-reversal Symmetry in Antenna Theory
by Mário G. Silveirinha
Symmetry 2019, 11(4), 486; https://doi.org/10.3390/sym11040486 - 4 Apr 2019
Cited by 10 | Viewed by 3366
Abstract
Here, I discuss some implications of the time-reversal invariance of lossless radiating systems. I highlight that time-reversal symmetry provides a rather intuitive explanation for the conditions of polarization and impedance matching of a receiving antenna. Furthermore, I describe a solution to generate the [...] Read more.
Here, I discuss some implications of the time-reversal invariance of lossless radiating systems. I highlight that time-reversal symmetry provides a rather intuitive explanation for the conditions of polarization and impedance matching of a receiving antenna. Furthermore, I describe a solution to generate the time-reversed electromagnetic field through the illumination of a matched receiving antenna with a Herglotz wave. Full article
Show Figures

Figure 1

18 pages, 9264 KiB  
Article
One-Plane Glide-Symmetric Holey Structures for Stop-Band and Refraction Index Reconfiguration
by Adrian Tamayo-Dominguez, Jose-Manuel Fernandez-Gonzalez and Oscar Quevedo-Teruel
Symmetry 2019, 11(4), 495; https://doi.org/10.3390/sym11040495 - 4 Apr 2019
Cited by 14 | Viewed by 3617
Abstract
This work presents a new configuration to create glide-symmetric structures in a single plane, which facilitates fabrication and avoids alignment problems in the assembly process compared to traditional glide-symmetric structures based on several planes. The proposed structures can be printed on the metal [...] Read more.
This work presents a new configuration to create glide-symmetric structures in a single plane, which facilitates fabrication and avoids alignment problems in the assembly process compared to traditional glide-symmetric structures based on several planes. The proposed structures can be printed on the metal face of a dielectric substrate, which acts as a support. The article includes a parametric study based on dispersion diagrams on the appearance of stop-bands and phase-shifting by breaking the symmetry. In addition, a procedure to regenerate symmetry is proposed that may be useful for reconfigurable devices. Finally, the measured and simulated S parameters of 10 × 10 unit-cell structures are presented to illustrate the attenuation in these stop-bands and the refractive index of the propagation modes. The attenuation obtained is greater than 30 dB in the stop-band for the symmetry-broken prototype. Full article
Show Figures

Figure 1

17 pages, 646 KiB  
Article
Prospects for Searching Thermal Effects, Non-Newtonian Gravity and Axion-Like Particles: Cannex Test of the Quantum Vacuum
by Galina L. Klimchitskaya, Vladimir M. Mostepanenko, René I. P. Sedmik and Hartmut Abele
Symmetry 2019, 11(3), 407; https://doi.org/10.3390/sym11030407 - 20 Mar 2019
Cited by 24 | Viewed by 2471
Abstract
We consider the Cannex (Casimir And Non-Newtonian force EXperiment) test of the quantum vacuum intended for measuring the gradient of the Casimir pressure between two flat parallel plates at large separations and constraining parameters of the chameleon model of dark energy in cosmology. [...] Read more.
We consider the Cannex (Casimir And Non-Newtonian force EXperiment) test of the quantum vacuum intended for measuring the gradient of the Casimir pressure between two flat parallel plates at large separations and constraining parameters of the chameleon model of dark energy in cosmology. A modification of the measurement scheme is proposed that allows simultaneous measurements of both the Casimir pressure and its gradient in one experiment. It is shown that with several improvements the Cannex test will be capable to strengthen the constraints on the parameters of the Yukawa-type interaction by up to an order of magnitude over a wide interaction range. The constraints on the coupling constants between nucleons and axion-like particles, which are considered as the most probable constituents of dark matter, could also be strengthened over a region of axion masses from 1 to 100 meV. Full article
(This article belongs to the Special Issue Cosmology and Quantum Vacuum)
Show Figures

Figure 1

18 pages, 3272 KiB  
Article
Modelling Construction Site Cost Index Based on Neural Network Ensembles
by Michał Juszczyk and Agnieszka Leśniak
Symmetry 2019, 11(3), 411; https://doi.org/10.3390/sym11030411 - 20 Mar 2019
Cited by 29 | Viewed by 3812
Abstract
Construction site overhead costs are key components of cost estimation in construction projects. The estimates are expected to be accurate, but there is a growing demand to shorten the time necessary to deliver cost estimates. The balancing (symmetry) between time of calculation and [...] Read more.
Construction site overhead costs are key components of cost estimation in construction projects. The estimates are expected to be accurate, but there is a growing demand to shorten the time necessary to deliver cost estimates. The balancing (symmetry) between time of calculation and satisfaction of reliable estimation was the reason for developing a new model for cost estimation in construction. This paper reports some results from the authors’ broad research on the modelling processes in engineering related to estimation of construction costs using artificial intelligence tools. The aim of this work was to develop a model capable of predicting a construction site cost index that would benefit from combining several artificial neural networks into an ensemble. Combining selected neural networks and forming the ensemble-based models compromised their strengths and weaknesses. With the use of data including training patterns collected on the basis of studies of completed construction projects, the authors investigated various types of neural networks in order to select the members of the ensemble. Finally, three models that were assessed in terms of performance and prediction quality were proposed. The results revealed that the developed models based on ensemble averaging and stacked generalisation met the expectations of knowledge generalisation and accuracy of prediction of site overhead cost index. The proposed models offer predictions of cost in an accepted error range and prove to deliver better predictions than those based on single neural networks. The developed tools can be used in the decision-making process regarding construction cost estimation. Full article
Show Figures

Figure 1

28 pages, 373 KiB  
Article
On the Structure of Finite Groupoids and Their Representations
by Alberto Ibort and Miguel A. Rodríguez
Symmetry 2019, 11(3), 414; https://doi.org/10.3390/sym11030414 - 20 Mar 2019
Cited by 9 | Viewed by 3224
Abstract
In this paper, both the structure and the theory of representations of finite groupoids are discussed. A finite connected groupoid turns out to be an extension of the groupoids of pairs of its set of units by its canonical totally disconnected isotropy subgroupoid. [...] Read more.
In this paper, both the structure and the theory of representations of finite groupoids are discussed. A finite connected groupoid turns out to be an extension of the groupoids of pairs of its set of units by its canonical totally disconnected isotropy subgroupoid. An extension of Maschke’s theorem for groups is proved showing that the algebra of a finite groupoid is semisimple and all finite-dimensional linear representations of finite groupoids are completely reducible. The theory of characters for finite-dimensional representations of finite groupoids is developed and it is shown that irreducible representations of the groupoid are in one-to-one correspondence with irreducible representation of its isotropy groups, with an extension of Burnside’s theorem describing the decomposition of the regular representation of a finite groupoid. Some simple examples illustrating these results are exhibited with emphasis on the groupoids interpretation of Schwinger’s description of quantum mechanical systems. Full article
(This article belongs to the Special Issue New trends on Symmetry and Topology in Quantum Mechanics)
Show Figures

Figure 1

14 pages, 3687 KiB  
Article
Twist and Glide Symmetries for Helix Antenna Design and Miniaturization
by Ángel Palomares-Caballero, Pablo Padilla, Antonio Alex-Amor, Juan Valenzuela-Valdés and Oscar Quevedo-Teruel
Symmetry 2019, 11(3), 349; https://doi.org/10.3390/sym11030349 - 8 Mar 2019
Cited by 18 | Viewed by 7591
Abstract
Here we propose the use of twist and glide symmetries to increase the equivalent refractive index in a helical guiding structure. Twist- and glide-symmetrical distributions are created with corrugations placed at both sides of a helical strip. Combined twist-and glide-symmetrical helical unit cells [...] Read more.
Here we propose the use of twist and glide symmetries to increase the equivalent refractive index in a helical guiding structure. Twist- and glide-symmetrical distributions are created with corrugations placed at both sides of a helical strip. Combined twist-and glide-symmetrical helical unit cells are studied in terms of their constituent parameters. The increase of the propagation constant is mainly controlled by the length of the corrugations. In our proposed helix antenna, twist and glide symmetry cells are used to reduce significantly the operational frequency compared with conventional helix antenna. Equivalently, for a given frequency of operation, the dimensions of helix are reduced with the use of higher symmetries. The theoretical results obtained for our proposed helical structure based on higher symmetries show a reduction of 42.2% in the antenna size maintaining a similar antenna performance when compared to conventional helix antennas. Full article
Show Figures

Figure 1

25 pages, 1302 KiB  
Article
Biological Bases of Beauty Revisited: The Effect of Symmetry, Averageness, and Sexual Dimorphism on Female Facial Attractiveness
by Alex L. Jones and Bastian Jaeger
Symmetry 2019, 11(2), 279; https://doi.org/10.3390/sym11020279 - 21 Feb 2019
Cited by 67 | Viewed by 21001
Abstract
The factors influencing human female facial attractiveness—symmetry, averageness, and sexual dimorphism—have been extensively studied. However, recent studies, using improved methodologies, have called into question their evolutionary utility and links with life history. The current studies use a range of approaches to quantify how [...] Read more.
The factors influencing human female facial attractiveness—symmetry, averageness, and sexual dimorphism—have been extensively studied. However, recent studies, using improved methodologies, have called into question their evolutionary utility and links with life history. The current studies use a range of approaches to quantify how important these factors actually are in perceiving attractiveness, through the use of novel statistical analyses and by addressing methodological weaknesses in the literature. Study One examines how manipulations of symmetry, averageness, femininity, and masculinity affect attractiveness using a two-alternative forced choice task, finding that increased masculinity and also femininity decrease attractiveness, compared to unmanipulated faces. Symmetry and averageness yielded a small and large effect, respectively. Study Two utilises a naturalistic ratings paradigm, finding similar effects of averageness and masculinity as Study One but no effects of symmetry and femininity on attractiveness. Study Three applies geometric face measurements of the factors and a random forest machine learning algorithm to predict perceived attractiveness, finding that shape averageness, dimorphism, and skin texture symmetry are useful features capable of relatively accurate predictions, while shape symmetry is uninformative. However, the factors do not explain as much variance in attractiveness as the literature suggests. The implications for future research on attractiveness are discussed. Full article
(This article belongs to the Special Issue Fluctuating asymmetry: A predictor of human life history outcomes)
Show Figures

Figure 1

13 pages, 355 KiB  
Article
Nonclassical Symmetry Solutions for Non-Autonomous Reaction-Diffusion Equations
by Bronwyn H. Bradshaw-Hajek
Symmetry 2019, 11(2), 208; https://doi.org/10.3390/sym11020208 - 12 Feb 2019
Cited by 9 | Viewed by 3311
Abstract
The behaviour of many systems in chemistry, combustion and biology can be described using nonlinear reaction diffusion equations. Here, we use nonclassical symmetry techniques to analyse a class of nonlinear reaction diffusion equations, where both the diffusion coefficient and the coefficient of the [...] Read more.
The behaviour of many systems in chemistry, combustion and biology can be described using nonlinear reaction diffusion equations. Here, we use nonclassical symmetry techniques to analyse a class of nonlinear reaction diffusion equations, where both the diffusion coefficient and the coefficient of the reaction term are spatially dependent. We construct new exact group invariant solutions for several forms of the spatial dependence, and the relevance of some of the solutions to population dynamics modelling is discussed. Full article
(This article belongs to the Special Issue Lie Symmetries at Work in Biology and Medicine)
Show Figures

Figure 1

Back to TopTop