Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = γ-globin gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2278 KB  
Review
Orphan Nuclear Receptors TR2 and TR4 in Erythropoiesis: From Mechanisms to Therapies
by Yunlong Liu, Helian Yang, Mengtian Ren, Qing Yu, Qingyang Xu and Xiuping Fu
Biomolecules 2025, 15(6), 798; https://doi.org/10.3390/biom15060798 - 31 May 2025
Viewed by 751
Abstract
Testicular orphan receptors TR2 and TR4 serve as central regulators of erythropoiesis, orchestrating the entire continuum of erythroid progenitor cell proliferation, differentiation, and maturation. As core components of the direct repeat erythroid determinant (DRED) complex, they activate erythroid-specific transcriptional programs to dynamically control [...] Read more.
Testicular orphan receptors TR2 and TR4 serve as central regulators of erythropoiesis, orchestrating the entire continuum of erythroid progenitor cell proliferation, differentiation, and maturation. As core components of the direct repeat erythroid determinant (DRED) complex, they activate erythroid-specific transcriptional programs to dynamically control the spatiotemporal expression of globin genes. These nuclear receptors not only engage in functional interactions with key erythroid transcription factors GATA1 and KLF1 to coregulate erythroid differentiation and maturation but also recruit epigenetic modifier complexes such as DNMT1 and LSD1 to modulate chromatin states dynamically. Research has established that dysfunctions in TR2/TR4 are implicated in β-thalassemia and sickle cell disease (SCD): β-thalassemia is associated with the defective silencing of γ-globin genes, while in SCD, TR2/TR4 antagonizes BCL11A to reactivate fetal hemoglobin (HbF) expression. This review systematically dissects the molecular regulatory networks of TR2/TR4 in erythroid cells, interprets their dual regulatory properties across different stages of erythroid differentiation, and explores the therapeutic potential of targeting TR2/TR4 for treating erythroid-related disorders such as β-thalassemia and SCD, thereby providing novel directions for hematological disorder therapy. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

21 pages, 15816 KB  
Review
Exploratory Review and In Silico Insights into circRNA and RNA-Binding Protein Roles in γ-Globin to β-Globin Switching
by Alawi Habara
Cells 2025, 14(4), 312; https://doi.org/10.3390/cells14040312 - 19 Feb 2025
Cited by 1 | Viewed by 1394
Abstract
β-globin gene cluster regulation involves complex mechanisms to ensure proper expression and function in RBCs. During development, switching occurs as γ-globin is replaced by β-globin. Key regulators, like BCL11A and ZBTB7A, repress γ-globin expression to facilitate this transition with other factors, like KLF1, [...] Read more.
β-globin gene cluster regulation involves complex mechanisms to ensure proper expression and function in RBCs. During development, switching occurs as γ-globin is replaced by β-globin. Key regulators, like BCL11A and ZBTB7A, repress γ-globin expression to facilitate this transition with other factors, like KLF1, LSD1, and PGC-1α; these regulators ensure an orchestrated transition from γ- to β-globin during development. While these mechanisms have been extensively studied, circRNAs have recently emerged as key contributors to gene regulation, but their role in β-globin gene cluster regulation remains largely unexplored. Although discovered in the 1970s, circRNAs have only recently been recognized for their functional roles, particularly in interactions with RNA-binding proteins. Understanding how circRNAs contribute to switching from γ- to β-globin could lead to new therapeutic strategies for hemoglobinopathies, such as sickle cell disease and β-thalassemia. This review uses the circAtlas 3.0 database to explore circRNA expressions in genes related to switching from γ- to β-globin expression, focusing on blood, bone marrow, liver, and spleen. It emphasizes the exploration of the potential interactions between circRNAs and RNA-binding proteins involved in β-globin gene cluster regulatory mechanisms, further enhancing our understanding of β-globin gene cluster expression. Full article
Show Figures

Graphical abstract

22 pages, 2045 KB  
Review
Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with Beta Thalassemia and Sickle Cell Disease
by Michael D. Diamantidis, Georgia Ikonomou, Ioanna Argyrakouli, Despoina Pantelidou and Sophia Delicou
Int. J. Mol. Sci. 2024, 25(22), 11886; https://doi.org/10.3390/ijms252211886 - 5 Nov 2024
Cited by 4 | Viewed by 4359
Abstract
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in [...] Read more.
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in patients with β-thalassemia (quantitative disorder), while SCD is a serious disease in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels (qualitative disorder). Despite the revolutionary progress in recent years with the approval of gene therapy and gene editing for specific patients, there is an unmet need for highlighting the mechanisms influencing hemoglobin production and for the development of novel drugs and targeted therapies. The identification of the transcription factors and other genetic modifiers of hemoglobin expression is of utmost importance for discovering novel therapeutic approaches for patients with hemoglobinopathies. The aim of this review is to describe these complex molecular mechanisms and pathways affecting hemoglobin expression and to highlight the relevant investigational approaches or pharmaceutical interventions focusing on restoring the hemoglobin normal function by linking the molecular background of the disease with the clinical perspective. All the associated drugs increasing the hemoglobin expression in patients with hemoglobinopathies, along with gene therapy and gene editing, are also discussed. Full article
Show Figures

Figure 1

10 pages, 1201 KB  
Article
The Effect of Resveratrol on Gamma Globin Gene Expression in Patients with Beta Thalassemia: The Role of Adaptation to Cellular Stress
by Hossein Jalali, Mohammad Reza Mahdavi, Mehrnoush Kosaryan, Ahmad Najafi, Aily Aliasgharian and Ebrahim Salehifar
Thalass. Rep. 2024, 14(3), 71-80; https://doi.org/10.3390/thalassrep14030009 - 17 Sep 2024
Viewed by 1376
Abstract
HbF induction is an appropriate strategy to ameliorate the severity of β-thalassemia symptoms. Hydroxyurea (HU) is the most common chemical agent introduced as an HbF inducer but responsiveness to HU is variable and the introduction of HbF inducers alternative to HU with low [...] Read more.
HbF induction is an appropriate strategy to ameliorate the severity of β-thalassemia symptoms. Hydroxyurea (HU) is the most common chemical agent introduced as an HbF inducer but responsiveness to HU is variable and the introduction of HbF inducers alternative to HU with low cytotoxicity has been a crucial challenge. Resveratrol is an HbF inducer agent that may have favorable effects on the differentiation of hematopoietic erythroid progenitors (HEPs). The present study aimed to investigate the effect of resveratrol on γ-globin, stress response, and anti-apoptotic gene expression among hydroxyurea (HU)-responders and HU-nonresponders (HU-NR). Four cases of HU-R and four cases of HU-NR were studied. HEPs of the patients were cultured, and the expression of γ-globin, Foxo3, and Bclxl was assessed. Moreover, the differentiation and apoptotic rate of the cells were investigated using flow cytometry analysis. In three cases, the γ-globin gene expression increased after resveratrol treatment. All of the HU-NR patients were also non-responders to resveratrol (Res-NR). The expression of Foxo3 and Bclxl genes was higher in responders to resveratrol (Res-R) compared to non-responders (Res-NR). The rate of apoptosis in Res-R patients was also lower than in Res-NR. Responders to resveratrol also had a higher rate of HEP maturation. The cells of both HU–NR and Res-NR patients could not adapt to stress conditions and proceed to the erythroid differentiation. In conclusion, resveratrol increased the γ-globin expression in HEPs of β-thalassemia patients. The response was observed only in R-HU patients with similar cellular pathways. Full article
Show Figures

Figure 1

14 pages, 1733 KB  
Article
Post-GWAS Validation of Target Genes Associated with HbF and HbA2 Levels
by Cristian Antonio Caria, Valeria Faà, Susanna Porcu, Maria Franca Marongiu, Daniela Poddie, Lucia Perseu, Alessandra Meloni, Simona Vaccargiu and Maria Serafina Ristaldi
Cells 2024, 13(14), 1185; https://doi.org/10.3390/cells13141185 - 12 Jul 2024
Cited by 1 | Viewed by 2156
Abstract
Genome-Wide Association Studies (GWASs) have identified a huge number of variants associated with different traits. However, their validation through in vitro and in vivo studies often lags well behind their identification. For variants associated with traits or diseases of biomedical interest, this gap [...] Read more.
Genome-Wide Association Studies (GWASs) have identified a huge number of variants associated with different traits. However, their validation through in vitro and in vivo studies often lags well behind their identification. For variants associated with traits or diseases of biomedical interest, this gap delays the development of possible therapies. This issue also impacts beta-hemoglobinopathies, such as beta-thalassemia and sickle cell disease (SCD). The definitive cures for these diseases are currently bone marrow transplantation and gene therapy. However, limitations regarding their effective use restrict their worldwide application. Great efforts have been made to identify whether modulators of fetal hemoglobin (HbF) and, to a lesser extent, hemoglobin A2 (HbA2) are possible therapeutic targets. Herein, we performed the post-GWAS in vivo validation of two genes, cyclin D3 (CCND3) and nuclear factor I X (NFIX), previously associated with HbF and HbA2 levels. The absence of Ccnd3 expression in vivo significantly increased g (HbF) and d (HbA2) globin gene expression. Our data suggest that CCND3 is a possible therapeutic target in sickle cell disease. We also confirmed the association of Nfix with γ-globin gene expression and present data suggesting a possible role for Nfix in regulating Kruppel-like transcription factor 1 (Klf1), a master regulator of hemoglobin switching. This study contributes to filling the gap between GWAS variant identification and target validation for beta-hemoglobinopathies. Full article
Show Figures

Graphical abstract

26 pages, 3200 KB  
Review
Pharmacogenomics of Drugs Used in β-Thalassemia and Sickle-Cell Disease: From Basic Research to Clinical Applications
by Roberto Gambari, Aliyu Dahiru Waziri, Hemali Goonasekera and Emmanuel Peprah
Int. J. Mol. Sci. 2024, 25(8), 4263; https://doi.org/10.3390/ijms25084263 - 12 Apr 2024
Cited by 9 | Viewed by 4289
Abstract
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the [...] Read more.
In this short review we have presented and discussed studies on pharmacogenomics (also termed pharmacogenetics) of the drugs employed in the treatment of β-thalassemia or Sickle-cell disease (SCD). This field of investigation is relevant, since it is expected to help clinicians select the appropriate drug and the correct dosage for each patient. We first discussed the search for DNA polymorphisms associated with a high expression of γ-globin genes and identified this using GWAS studies and CRISPR-based gene editing approaches. We then presented validated DNA polymorphisms associated with a high HbF production (including, but not limited to the HBG2 XmnI polymorphism and those related to the BCL11A, MYB, KLF-1, and LYAR genes). The expression of microRNAs involved in the regulation of γ-globin genes was also presented in the context of pharmacomiRNomics. Then, the pharmacogenomics of validated fetal hemoglobin inducers (hydroxyurea, butyrate and butyrate analogues, thalidomide, and sirolimus), of iron chelators, and of analgesics in the pain management of SCD patients were considered. Finally, we discuss current clinical trials, as well as international research networks focusing on clinical issues related to pharmacogenomics in hematological diseases. Full article
Show Figures

Figure 1

20 pages, 4233 KB  
Article
Simvastatin-Mediated Nrf2 Activation Induces Fetal Hemoglobin and Antioxidant Enzyme Expression to Ameliorate the Phenotype of Sickle Cell Disease
by Caixia Xi, Chithra Palani, Mayuko Takezaki, Huidong Shi, Anatolij Horuzsko, Betty S. Pace and Xingguo Zhu
Antioxidants 2024, 13(3), 337; https://doi.org/10.3390/antiox13030337 - 11 Mar 2024
Cited by 2 | Viewed by 2763
Abstract
Sickle cell disease (SCD) is a pathophysiological condition of chronic hemolysis, oxidative stress, and elevated inflammation. The transcription factor Nrf2 is a master regulator of oxidative stress. Here, we report that the FDA-approved oral agent simvastatin, an inhibitor of hydroxymethyl-glutaryl coenzyme A reductase, [...] Read more.
Sickle cell disease (SCD) is a pathophysiological condition of chronic hemolysis, oxidative stress, and elevated inflammation. The transcription factor Nrf2 is a master regulator of oxidative stress. Here, we report that the FDA-approved oral agent simvastatin, an inhibitor of hydroxymethyl-glutaryl coenzyme A reductase, significantly activates the expression of Nrf2 and antioxidant enzymes. Simvastatin also induces fetal hemoglobin expression in SCD patient primary erythroid progenitors and a transgenic mouse model. Simvastatin alleviates SCD symptoms by decreasing hemoglobin S sickling, oxidative stress, and inflammatory stress in erythroblasts. Particularly, simvastatin increases cellular levels of cystine, the precursor for the biosynthesis of the antioxidant reduced glutathione, and decreases the iron content in SCD mouse spleen and liver tissues. Mechanistic studies suggest that simvastatin suppresses the expression of the critical histone methyltransferase enhancer of zeste homolog 2 to reduce both global and gene-specific histone H3 lysine 27 trimethylation. These chromatin structural changes promote the assembly of transcription complexes to fetal γ-globin and antioxidant gene regulatory regions in an antioxidant response element-dependent manner. In summary, our findings suggest that simvastatin activates fetal hemoglobin and antioxidant protein expression, modulates iron and cystine/reduced glutathione levels to improve the phenotype of SCD, and represents a therapeutic strategy for further development. Full article
Show Figures

Graphical abstract

10 pages, 3647 KB  
Hypothesis
RNA Activators of Stress Kinase PKR within Human Genes That Control Splicing or Translation Create Novel Targets for Hereditary Diseases
by Raymond Kaempfer
Int. J. Mol. Sci. 2024, 25(2), 1323; https://doi.org/10.3390/ijms25021323 - 22 Jan 2024
Viewed by 2162
Abstract
Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. [...] Read more.
Specific sequences within RNA encoded by human genes essential for survival possess the ability to activate the RNA-dependent stress kinase PKR, resulting in phosphorylation of its substrate, eukaryotic translation initiation factor-2α (eIF2α), either to curb their mRNA translation or to enhance mRNA splicing. Thus, interferon-γ (IFNG) mRNA activates PKR through a 5′-terminal 203-nucleotide pseudoknot structure, thereby strongly downregulating its own translation and preventing a harmful hyper-inflammatory response. Tumor necrosis factor-α (TNF) pre-mRNA encodes within the 3′-untranslated region (3′-UTR) a 104-nucleotide RNA pseudoknot that activates PKR to enhance its splicing by an order of magnitude while leaving mRNA translation intact, thereby promoting effective TNF protein expression. Adult and fetal globin genes encode pre-mRNA structures that strongly activate PKR, leading to eIF2α phosphorylation that greatly enhances spliceosome assembly and splicing, yet also structures that silence PKR activation upon splicing to allow for unabated globin mRNA translation essential for life. Regulatory circuits resulting in each case from PKR activation were reviewed previously. Here, we analyze mutations within these genes created to delineate the RNA structures that activate PKR and to deconvolute their folding. Given the critical role of intragenic RNA activators of PKR in gene regulation, such mutations reveal novel potential RNA targets for human disease. Full article
(This article belongs to the Special Issue RNA in Human Diseases: Challenges and Opportunities)
Show Figures

Graphical abstract

14 pages, 2798 KB  
Article
Effects of Mithramycin on BCL11A Gene Expression and on the Interaction of the BCL11A Transcriptional Complex to γ-Globin Gene Promoter Sequences
by Alessia Finotti, Jessica Gasparello, Cristina Zuccato, Lucia Carmela Cosenza, Enrica Fabbri, Nicoletta Bianchi and Roberto Gambari
Genes 2023, 14(10), 1927; https://doi.org/10.3390/genes14101927 - 11 Oct 2023
Cited by 1 | Viewed by 3001
Abstract
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from β-thalassemia patients. In this respect, previously published studies indicate that MTH is [...] Read more.
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from β-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of β-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2093 KB  
Review
The Long Scientific Journey of Sirolimus (Rapamycin): From the Soil of Easter Island (Rapa Nui) to Applied Research and Clinical Trials on β-Thalassemia and Other Hemoglobinopathies
by Roberto Gambari, Cristina Zuccato, Lucia Carmela Cosenza, Matteo Zurlo, Jessica Gasparello, Alessia Finotti, Maria Rita Gamberini and Marco Prosdocimi
Biology 2023, 12(9), 1202; https://doi.org/10.3390/biology12091202 - 2 Sep 2023
Cited by 7 | Viewed by 4604
Abstract
In this review article, we present the fascinating story of rapamycin (sirolimus), a drug able to induce γ-globin gene expression and increased production of fetal hemoglobin (HbF) in erythroid cells, including primary erythroid precursor cells (ErPCs) isolated from β-thalassemia patients. For this reason, [...] Read more.
In this review article, we present the fascinating story of rapamycin (sirolimus), a drug able to induce γ-globin gene expression and increased production of fetal hemoglobin (HbF) in erythroid cells, including primary erythroid precursor cells (ErPCs) isolated from β-thalassemia patients. For this reason, rapamycin is considered of great interest for the treatment of β-thalassemia. In fact, high levels of HbF are known to be highly beneficial for β-thalassemia patients. The story of rapamycin discovery began in 1964, with METEI, the Medical Expedition to Easter Island (Rapa Nui). During this expedition, samples of the soil from different parts of the island were collected and, from this material, an antibiotic-producing microorganism (Streptomyces hygroscopicus) was identified. Rapamycin was extracted from the mycelium with organic solvents, isolated, and demonstrated to be very active as an anti-bacterial and anti-fungal agent. Later, rapamycin was demonstrated to inhibit the in vitro cell growth of tumor cell lines. More importantly, rapamycin was found to be an immunosuppressive agent applicable to prevent kidney rejection after transplantation. More recently, rapamycin was found to be a potent inducer of HbF both in vitro using ErPCs isolated from β-thalassemia patients, in vivo using experimental mice, and in patients treated with this compound. These studies were the basis for proposing clinical trials on β-thalassemia patients. Full article
Show Figures

Graphical abstract

20 pages, 954 KB  
Review
Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies
by Kiriaki Paschoudi, Evangelia Yannaki and Nikoletta Psatha
Int. J. Mol. Sci. 2023, 24(11), 9527; https://doi.org/10.3390/ijms24119527 - 31 May 2023
Cited by 17 | Viewed by 4884
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to [...] Read more.
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing)
Show Figures

Figure 1

24 pages, 2372 KB  
Review
Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing
by Letizia Fontana, Zoe Alahouzou, Annarita Miccio and Panagiotis Antoniou
Genes 2023, 14(3), 577; https://doi.org/10.3390/genes14030577 - 25 Feb 2023
Cited by 12 | Viewed by 8323
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding [...] Read more.
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies. Full article
(This article belongs to the Special Issue Gene Editing for Therapy and Reverse Genetics of Blood Diseases)
Show Figures

Figure 1

19 pages, 976 KB  
Review
CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia
by Udani Gamage, Kesari Warnakulasuriya, Sonali Hansika and Gayathri N. Silva
Thalass. Rep. 2023, 13(1), 51-69; https://doi.org/10.3390/thalassrep13010006 - 6 Feb 2023
Cited by 8 | Viewed by 19473
Abstract
β-Thalassemia is an inherited hematological disorder that results from genetic changes in the β-globin gene, leading to the reduced or absent synthesis of β-globin. For several decades, the only curative treatment option for β-thalassemia has been allogeneic hematopoietic cell transplantation (allo-HCT). Nonetheless, rapid [...] Read more.
β-Thalassemia is an inherited hematological disorder that results from genetic changes in the β-globin gene, leading to the reduced or absent synthesis of β-globin. For several decades, the only curative treatment option for β-thalassemia has been allogeneic hematopoietic cell transplantation (allo-HCT). Nonetheless, rapid progress in genome modification technologies holds great potential for treating this disease and will soon change the current standard of care for β-thalassemia. For instance, the emergence of the CRISPR/Cas9 genome editing platform has opened the door for precision gene editing and can serve as an effective molecular treatment for a multitude of genetic diseases. Investigational studies were carried out to treat β-thalassemia patients utilizing CRISPR-based CTX001 therapy targeting the fetal hemoglobin silencer BCL11A to restore γ-globin expression in place of deficient β-globin. The results of recently carried out clinical trials provide hope of CTX001 being a promising one-time therapeutic option to treat β-hemoglobinopathies. This review provides an insight into the key scientific steps that led to the development and application of novel CRISPR/Cas9–based gene therapies as a promising therapeutic platform for transfusion-dependent β-thalassemia (TDT). Despite the resulting ethical, moral, and social challenges, CRISPR provides an excellent treatment option against hemoglobin-associated genetic diseases. Full article
(This article belongs to the Section Innovative Treatment of Thalassemia)
Show Figures

Figure 1

11 pages, 1716 KB  
Article
The rs368698783 (G>A) Polymorphism Affecting LYAR Binding to the Aγ-Globin Gene Is Associated with High Fetal Hemoglobin (HbF) in β-Thalassemia Erythroid Precursor Cells Treated with HbF Inducers
by Cristina Zuccato, Lucia Carmela Cosenza, Matteo Zurlo, Giulia Breveglieri, Nicoletta Bianchi, Ilaria Lampronti, Jessica Gasparello, Chiara Scapoli, Monica Borgatti, Alessia Finotti and Roberto Gambari
Int. J. Mol. Sci. 2023, 24(1), 776; https://doi.org/10.3390/ijms24010776 - 1 Jan 2023
Cited by 5 | Viewed by 3126
Abstract
The human homologue of mouse Ly-1 antibody reactive clone protein (LYAR) is a putative novel regulator of γ-globin gene transcription. The LYAR DNA-binding motif (5′-GGTTAT-3′) is located within the 5′-UTR of the Aγ-globin gene. The LYAR rs368698783 (G>A) polymorphism is present in β-thalassemia [...] Read more.
The human homologue of mouse Ly-1 antibody reactive clone protein (LYAR) is a putative novel regulator of γ-globin gene transcription. The LYAR DNA-binding motif (5′-GGTTAT-3′) is located within the 5′-UTR of the Aγ-globin gene. The LYAR rs368698783 (G>A) polymorphism is present in β-thalassemia patients and decreases the LYAR binding efficiency to the Aγ-globin gene. The objective of this study was to stratify β-thalassemia patients with respect to the rs368698783 (G>A) polymorphism and to verify whether their erythroid precursor cells (ErPCs) differentially respond in vitro to selected fetal hemoglobin (HbF) inducers. The rs368698783 (G>A) polymorphism was detected by DNA sequencing, hemoglobin production by HPLC, and accumulation of globin mRNAs by RT-qPCR. We found that the LYAR rs368698783 (G>A) polymorphism is associated with high basal and induced production of fetal hemoglobin in β-thalassemia patients. The most striking association was found using rapamycin as an HbF inducer. The results presented here could be considered important not only for basic biomedicine but also in applied translational research for precision medicine in personalized therapy of β-thalassemia. Accordingly, our data suggest that the rs368698783 polymorphism might be considered among the parameters useful to recruit patients with the highest probability of responding to in vivo hydroxyurea (HU) treatment. Full article
(This article belongs to the Special Issue Advances in Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 2422 KB  
Article
Metabolomics Study of Serum Samples of β-YAC Transgenic Mice Treated with Tenofovir Disoproxil Fumarate
by Sindhia Kumari, Faisal Khan, Amna Jabbar Siddiqui, Nurmeen Adil, Jalal Uddin, Mufarreh Asmari and Syed Ghulam Musharraf
Int. J. Mol. Sci. 2022, 23(24), 15750; https://doi.org/10.3390/ijms232415750 - 12 Dec 2022
Cited by 1 | Viewed by 2252
Abstract
β-thalassemia is one of the most common monogenic disorders and a life-threatening health issue in children. A cost-effective and safe therapeutic approach to treat this disease is to reactivate the γ-globin gene for fetal hemoglobin (HbF) production that has been silenced during infancy. [...] Read more.
β-thalassemia is one of the most common monogenic disorders and a life-threatening health issue in children. A cost-effective and safe therapeutic approach to treat this disease is to reactivate the γ-globin gene for fetal hemoglobin (HbF) production that has been silenced during infancy. Hydroxyurea (HU) is the only FDA approved HbF inducer. However, its cytotoxicity and inability to respond significantly in all patients pose a need for an HbF inducer with better efficacy. The study describes the serum metabolic alteration in β-YAC transgenic mice treated with Tenofovir disoproxil fumarate (TDF) (n = 5), a newly identified HbF inducer, and compared to the mice groups treated with HU (n = 5) and untreated control (n = 5) using gas chromatography-mass spectrometry. Various univariate and multivariate statistical analyses were performed to identify discriminant metabolites that altered the biological pathways encompassing galactose metabolism, lactose degradation, and inositol. Furthermore, the decreased concentrations of L-fucose and geraniol in TDF-treated mice help in recovering towards normal, decreasing oxidative stress even much better than the HU-treated mice. The proposed study suggested that TDF can reduce the deficiency of blood required for β-thalassemia and can be used for the preclinical study at phase I/II for fetal hemoglobin production. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

Back to TopTop