Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = 7050 aluminum alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2324 KB  
Article
Influence of Aluminum Alloy Substrate Temperature on Microstructure and Corrosion Resistance of Cr/Ti Bilayer Coatings
by Yuqi Wang, Tao He, Xiangyang Du, Alexey Vereschaka, Catherine Sotova, Yang Ding, Kang Chen, Jian Li and Peiyu He
Coatings 2025, 15(8), 891; https://doi.org/10.3390/coatings15080891 - 1 Aug 2025
Viewed by 343
Abstract
Cr/Ti bilayer coatings were deposited on 7050 aluminum alloy via magnetron sputtering at substrate temperatures of room temperature (RT), 150 °C, and 300 °C to investigate temperature effects on microstructure, hardness, and corrosion resistance. All coatings exhibited Cr(110) and Ti(002) phases. Temperature significantly [...] Read more.
Cr/Ti bilayer coatings were deposited on 7050 aluminum alloy via magnetron sputtering at substrate temperatures of room temperature (RT), 150 °C, and 300 °C to investigate temperature effects on microstructure, hardness, and corrosion resistance. All coatings exhibited Cr(110) and Ti(002) phases. Temperature significantly modulated corrosion resistance by altering pore density, grain boundary density, and passivation film composition. Increasing temperature from RT to 150 °C raised corrosion rates primarily due to increased pore density. Further increasing to 300 °C reduced corrosion rates mainly through decreased grain boundary density, while passivation film composition changes altered electrochemical reaction kinetics. Substrate-coating interface defect density primarily influenced hardness with minimal effect on corrosion. Consequently, the RT-deposited coating, despite lower hardness, demonstrated optimal corrosion resistance: polarization resistance (7.17 × 104 Ω·cm2), charge transfer resistance (12,400 Ω·cm2), and corrosion current density (2.47 × 10−7 A/cm2), the latter being two orders of magnitude lower than the substrate. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

16 pages, 3915 KB  
Article
Corrosion Resistance of Ti/Cr Gradient Modulation Period Nanomultilayer Coatings Prepared by Magnetron Sputtering on 7050 Aluminum Alloy
by Kang Chen, Tao He, Xiangyang Du, Alexey Vereschaka, Catherine Sotova, Yang Ding and Jian Li
Inorganics 2025, 13(7), 242; https://doi.org/10.3390/inorganics13070242 - 13 Jul 2025
Cited by 1 | Viewed by 509
Abstract
Nanostructured multilayer anticorrosion coatings offer an effective strategy to mitigate the poor corrosion resistance of aluminum alloys and extend their service life. In this study, four types of Ti/Cr multilayer coatings with varied modulation periods along the growth direction were deposited on 7050 [...] Read more.
Nanostructured multilayer anticorrosion coatings offer an effective strategy to mitigate the poor corrosion resistance of aluminum alloys and extend their service life. In this study, four types of Ti/Cr multilayer coatings with varied modulation periods along the growth direction were deposited on 7050 aluminum alloy substrates using direct current magnetron sputtering. The cross-sectional microstructure of the coatings was characterized by scanning electron microscopy (SEM), while their mechanical and corrosion properties were systematically evaluated through nanoindentation and electrochemical measurements. The influence of modulation period distribution on the corrosion resistance of Ti/Cr multilayers was thoroughly investigated. The results show that the average thickness of the Ti/Cr multilayer coatings is 680 nm, the structure is dense, and the coarse columnar crystals are not seen. All Ti/Cr multilayer coatings significantly reduced the corrosion current density of 7050 aluminum alloy by about 10 times compared with that of the substrate, showing good protective effect. Modulation period along the coating growth direction decreases the Ti/Cr multilayer coating surface heterogeneous interface density increases, inhibits the formation of corrosion channels, hindering the penetration of corrosive media, and the other three coatings and aluminum alloy compared to its corrosion surface did not see obvious pore corrosion, showing the most excellent corrosion resistance. Full article
Show Figures

Figure 1

13 pages, 2285 KB  
Article
Effect of Buffer Layer Type on the Mechanical Properties and Corrosion Resistance of Magnetron Sputtered Cr Coatings on 7050 Al Alloy
by Yang Ding, Tao He, Xiangyang Du, Alexey Vereschaka, Catherine Sotova, Kang Chen, Jian Li, Yuqi Wang and Peiyu He
Coatings 2025, 15(7), 803; https://doi.org/10.3390/coatings15070803 - 9 Jul 2025
Viewed by 404
Abstract
Limited hardness and corrosion resistance restrict 7050 aluminum alloys in aggressive environments. Cr coatings, applied as single layers or over Ti, Al, or Ni buffer layers, were deposited onto 7050 aluminum alloy by direct-current magnetron sputtering; their microstructure, adhesion, mechanical properties, and corrosion [...] Read more.
Limited hardness and corrosion resistance restrict 7050 aluminum alloys in aggressive environments. Cr coatings, applied as single layers or over Ti, Al, or Ni buffer layers, were deposited onto 7050 aluminum alloy by direct-current magnetron sputtering; their microstructure, adhesion, mechanical properties, and corrosion behavior were examined. The results indicate that introducing a buffer layer significantly enhances the bonding strength between a Cr coating and an aluminum alloy substrate, with the Ni buffer layer exhibiting the highest bonding strength, nearly three times that of the Cr coating alone. Furthermore, the buffer layer influences the mechanical properties of the Cr coatings, with Ni/Cr and Al/Cr coatings demonstrating increased hardness and elastic modulus. The Ni/Cr coating achieved the highest values of 3.95 GPa and 62.09 GPa, respectively. Regarding corrosion performance, The Cr coatings containing buffer layers showed markedly better corrosion resistance than the bare 7050 Al alloy. A compact Cr2O3 passive film formed on their surfaces, cutting the corrosion current density by roughly two orders of magnitude. Among all samples, the Ti/Cr coating performed best, registering the lowest current density (1.687 × 10−6 A cm−2) and the highest charge-transfer resistance (6090 Ω cm2). Full article
(This article belongs to the Special Issue Advanced Surface Engineering of Alloys: Coatings and Thin Films)
Show Figures

Figure 1

15 pages, 4447 KB  
Article
Numerical Assessment on the DC Casting 7050 Aluminum Alloy Under Melt Shearing and Magnetic Fields
by Jinchuan Wang, Yubo Zuo, Qingfeng Zhu, Rui Wang and Xianliang Guo
Metals 2025, 15(4), 360; https://doi.org/10.3390/met15040360 - 25 Mar 2025
Viewed by 654
Abstract
The direct-chill (DC) casting of diameter of 300 mm 7050 aluminum alloy ingots under the impact of intense melt shearing and electromagnetic fields (combined fields) was simulated using the COMSOL software 6.2 to determine the temperature distribution and melt flow. The results indicated [...] Read more.
The direct-chill (DC) casting of diameter of 300 mm 7050 aluminum alloy ingots under the impact of intense melt shearing and electromagnetic fields (combined fields) was simulated using the COMSOL software 6.2 to determine the temperature distribution and melt flow. The results indicated that the use of electromagnetic fields, intense melt shearing, and combined fields can all improve melt flow velocity, heat transfer efficiency, temperature field uniformity, and reduce sump depth when compared to conventional DC casting. However, the use of combined fields creates the shallowest sump and the most uniform temperature field. With the application of electromagnetic field, intensive melt shearing, and combined fields, the sump depth was decreased from 121 mm of DC casting to 118 mm, 112 mm, and 110 mm, respectively. Under the impact of the combined fields, the increase in the rotor rotation speed leads to the enhancement of overall flow velocity, the improvement of temperature distribution uniformity, and the reduction of melt temperature in the sump. The temperatures at reference points A and B dropped from 631.80 °C and 645.26 °C to 630.20 °C and 630.75 °C, respectively, as the rotor rotation speed increased from 1500 rpm to 6000 rpm. Additionally, the application of the combined fields resulted in a uniform microstructure distribution and notable grain refinement. Full article
Show Figures

Figure 1

12 pages, 2746 KB  
Article
Influence of Retrogression and Re-Aging Parameters on the Microstructure and Hardness of Jet-Formed 7050 Alloy
by Lei Zhang, Shuohao Xing, Hongchao Zhai, Huiying Hou, Zhijie Wang and Sha Liu
Materials 2025, 18(5), 1063; https://doi.org/10.3390/ma18051063 - 27 Feb 2025
Viewed by 669
Abstract
In this paper, regression and re-aging treatment (RRA) was performed on the 7050 alloy, and the evolution in the microstructure of the 7050 alloy was observed by metallography and SEM. The effect of regression and re-aging treatment on the hardness of the alloy [...] Read more.
In this paper, regression and re-aging treatment (RRA) was performed on the 7050 alloy, and the evolution in the microstructure of the 7050 alloy was observed by metallography and SEM. The effect of regression and re-aging treatment on the hardness of the alloy was investigated; the maximum hardness was 84.576 HRB at 180 °C/30 min. It was found that with the increase in regression treatment time, the size of the precipitates on the grain boundaries gradually increased, while the number of the precipitates inside the grain decreased accordingly. In the course of the experiment, the η’ (MgZn2) transforms into the η (MgZn2). As a result, the hardness of the alloy showed a decreasing trend. Meanwhile, the precipitates on the grain boundaries gradually increased in size, while the number of precipitates within the grain boundaries correspondingly decreased. These results reveal the influence of the re-aging treatment on the microstructure and mechanical properties of 7050 aluminum alloy, providing an important experimental basis for further optimizing the performance of the alloy. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

19 pages, 10767 KB  
Article
Surface Integrity and Machining Mechanism of Al 7050 Induced by Multi-Physical Field Coupling in High-Speed Machining
by Wei Lu, Chenbing Ni, Youqiang Wang, Chengguo Zong, Dejian Liu and Xingbao Huang
Lubricants 2025, 13(2), 47; https://doi.org/10.3390/lubricants13020047 - 22 Jan 2025
Cited by 1 | Viewed by 1192
Abstract
Improving the surface quality and controlling the microstructure evolution of difficult-to-cut materials are always challenges in high-speed machining (HSM). In this paper, surface topography, defects and roughness are assessed to characterize the surface features of 7050 aluminum alloy (Al 7050) under HSM conditions [...] Read more.
Improving the surface quality and controlling the microstructure evolution of difficult-to-cut materials are always challenges in high-speed machining (HSM). In this paper, surface topography, defects and roughness are assessed to characterize the surface features of 7050 aluminum alloy (Al 7050) under HSM conditions characterized by high temperature, strain and strain rate. Based on multi-physical field coupling, the mechanism of microstructure evolution of Al 7050 is investigated in HSM. The results indicate that the surface morphology and roughness of Al7050 during HSM are optimal at fz = 0.025 mm/z, and the formation of surface defects (adherent chips, cavities, microcracks, material compression and tearing) in HSM is mainly affected by thermo-mechanical coupling. Significant differences are observed in the microstructure of different machined subsurfaces by electron backscatter diffraction (EBSD) technology, and high cutting speeds and high feed rates contributed to recrystallization. The crystallographic texture types on machined subsurface are mainly {110}<112> Brass texture, {001}<100> Cube texture, {123}<634> S texture and {124}<112> R texture, and the crystallographic texture type and intensity are significantly affected by multi-physical field coupling. The elastic–plastic deformation and microstructural evolution of Al7050 alloy during the HSM process are mainly influenced by the coupling effects of multiple physical fields (stress–strain field and thermo-mechanical coupling field). This study reveals the internal mechanism of multi-physical field coupling in HSM and provides valuable enlightenment for the control of microstructure evolution of difficult-to-cut materials in HSM. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

16 pages, 9293 KB  
Article
Microstructure and Properties of 7050-T74 Aluminum Alloys with Different Zn/Mg Ratios
by Daihong Xiao, Zongzheng He and Lanping Huang
Metals 2024, 14(11), 1226; https://doi.org/10.3390/met14111226 - 27 Oct 2024
Cited by 1 | Viewed by 1736
Abstract
Aluminum alloy 7050-T74 with varying zinc-to-magnesium (Zn/Mg) mass fractions was synthesized using melt casting and hot extrusion techniques. This study investigated the influence of different Zn/Mg ratios on the microstructure, mechanical properties, and corrosion resistance of the alloy. Light microscopy, scanning electron microscopy [...] Read more.
Aluminum alloy 7050-T74 with varying zinc-to-magnesium (Zn/Mg) mass fractions was synthesized using melt casting and hot extrusion techniques. This study investigated the influence of different Zn/Mg ratios on the microstructure, mechanical properties, and corrosion resistance of the alloy. Light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), tensile testing, and corrosion testing were employed as analytical methods. The findings indicate that as the Zn/Mg ratio increases from 2.36 to 3.84, the proportion of low-angle boundaries (LABs) within the alloys initially rises and then decreases, achieving a balance between high strength and favorable elongation. Specifically, at a Zn/Mg ratio of 2.72, the alloy exhibits a tensile strength of 641 MPa, a yield strength of 609 MPa, and an elongation of 10.1%. Additionally, increasing the Zn/Mg ratio to 2.90 slightly reduces intergranular corrosion resistance while enhancing exfoliation corrosion resistance. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

14 pages, 4692 KB  
Article
Experimental Study of Surface Microtexture Formed by Laser-Induced Cavitation Bubble on 7050 Aluminum Alloy
by Bin Li, Byung-Won Min, Yingxian Ma, Rui Zhou, Hai Gu and Yupeng Cao
Coatings 2024, 14(9), 1230; https://doi.org/10.3390/coatings14091230 - 23 Sep 2024
Viewed by 1381
Abstract
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and [...] Read more.
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and the underwater acoustic signal of evolution was collected by a fiber optic hydrophone system. This combined approach was used to study the effect of the cavitation bubble on 7050 aluminum alloy. The surface morphology of the microtexture was analyzed by a confocal microscope, and the tribological properties of the microtexture were analyzed by a friction testing machine. Then the feasibility of the preparation process was verified and the optimal density was obtained. The study shows that the microtexture on the surface of a sample is formed by the combined results of the plasma shock wave and the collapse shock wave. When the density of microtexture is less than or equal to 19.63%, the diameters of the micropits range from 478 μm to 578 μm, and the depths of the micropits range from 13.56 μm to 18.25 μm. This shows that the laser-induced cavitation bubble is able to form repeatable microtexture. The friction coefficient of the sample with microtexture is lower than that of the untextured sample, with an average friction coefficient of 0.16. This indicates that the microtexture formed by laser-induced cavitation bubble has a good lubrication effect. The sample with a density of 19.63% is uniform and smooth, having the minimum friction coefficient, with an average friction coefficient of 0.14. This paper provides a new approach for microtexture processing of metal materials. Full article
Show Figures

Figure 1

11 pages, 1445 KB  
Article
Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy
by Yupeng Cao, Ranran Hu, Weidong Shi and Rui Zhou
Water 2024, 16(10), 1410; https://doi.org/10.3390/w16101410 - 15 May 2024
Cited by 3 | Viewed by 1597
Abstract
To investigate the feasibility and formation laws of fabricating micro-dimples induced by near-wall laser-induced cavitation bubble (LICB) on 7050 aluminum alloy. A high-speed camera and a fiber-optic hydrophone system were used to capture pulsation evolution images and acoustic signals of LICB. Meanwhile, a [...] Read more.
To investigate the feasibility and formation laws of fabricating micro-dimples induced by near-wall laser-induced cavitation bubble (LICB) on 7050 aluminum alloy. A high-speed camera and a fiber-optic hydrophone system were used to capture pulsation evolution images and acoustic signals of LICB. Meanwhile, a three-dimensional profilometer was employed to examine the contour morphology of the surface micro-dimple on the specimen. The results show that at an energy level of 500 mJ, the total pulsation period for the empty bubble is 795 μs, with individual pulsation periods of 412.5 μs, 217 μs, and 165 μs for the first, second, and third cycles, respectively, with most energy of the laser and bubble being consumed during the first evolution period. Under the synergy of the plasma shock wave and collapse shock wave, a spherical dimple with a diameter of 450 μm is formed on the sample surface with copper foil as the absorption layer. A model of micro-dimple formed by LICB impact is established. As the energy increases, the depth of the surface micro-dimple peaks at an energy of 400 mJ and then decreases. The depth of the surface micro-dimple increases with the increase in the number of impacts; the optimal technology parameters for the micro-dimple formation by LICB impact are as follows: the absorption layer is copper foil, the energy is 400 mJ, and the number of impacts is three. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

14 pages, 17250 KB  
Article
Experimental Study of Laser-Induced Cavitation Bubbles near Wall: Plasma Shielding Observation
by Rui Zhou, Kangwen Li, Yupeng Cao, Weidong Shi, Yongfei Yang, Linwei Tan, Ranran Hu and Yongxin Jin
Water 2024, 16(10), 1324; https://doi.org/10.3390/w16101324 - 7 May 2024
Cited by 2 | Viewed by 2081
Abstract
To investigate the plasma shielding of laser-induced cavitation bubbles near a wall, a pulsed laser with different energies was selected to induce cavitation bubbles on the surface of 7050-T7451 aluminum alloy. A high-speed camera captured the evolution of the cavitation bubble, while a [...] Read more.
To investigate the plasma shielding of laser-induced cavitation bubbles near a wall, a pulsed laser with different energies was selected to induce cavitation bubbles on the surface of 7050-T7451 aluminum alloy. A high-speed camera captured the evolution of the cavitation bubble, while a fiber-optic hydrophone system collected the acoustic signals during the evolution. Finally, a confocal microscope was used to view and analyze the surface morphology of 7050 aluminum alloy. The experimental results indicate that as the laser energy increases, the diameter, the evolution time, the pressure of the bubble, and both the pit diameter and depth all increase. Beyond an energy level of 1.4 J, the maximum diameter and the evolution time of the laser-induced cavitation bubble begin to decrease; the maximum diameter decreases by 2.04%, and the first evolution time decreases by 3.26%. Plasma shielding was observed in this experiment. Considering that the essence of a laser-induced cavitation bubble is the interaction between a high-energy laser and a liquid medium, the abnormal decrease in the maximum diameter, evolution time, and sound pressure epitomizes the manifestation of plasma shielding. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

15 pages, 6730 KB  
Article
The Effect of MoS2 and MWCNTs Nanomicro Lubrication on the Process of 7050 Aluminum Alloy
by Bohan Xiao, Changming Zhang and Xuan Cao
Processes 2024, 12(1), 68; https://doi.org/10.3390/pr12010068 - 28 Dec 2023
Cited by 5 | Viewed by 1367
Abstract
Nanofluid Minimum Quantity Lubrication (NMQL) is a resource-saving, environmentally friendly, and efficient green processing technology. Therefore, this study employs Minimum Quantity Lubrication (MQL) technology to conduct milling operations on aerospace 7050 aluminum alloy using soybean oil infused with varying concentrations of MoS2 [...] Read more.
Nanofluid Minimum Quantity Lubrication (NMQL) is a resource-saving, environmentally friendly, and efficient green processing technology. Therefore, this study employs Minimum Quantity Lubrication (MQL) technology to conduct milling operations on aerospace 7050 aluminum alloy using soybean oil infused with varying concentrations of MoS2 and MWCNTs nanoparticles. By measuring cutting forces, cutting temperatures, and surface roughness under three different lubrication conditions (dry machining, Minimum Quantity Lubrication, and nanofluid minimum quantity lubrication), the optimal lubricating oil with the best lubrication performance is selected. Under the conditions of hybrid nanofluid minimum quantity lubrication (NMQL), as compared to dry machining and Minimum Quantity Lubrication (MQL) processing, surface roughness was reduced by 48% and 36% respectively, cutting forces were decreased by 35% and 29% respectively, and cutting temperatures were lowered by 44% and 40%, respectively. Under the conditions of hybrid nanofluid minimum quantity lubrication, the optimal parameter combination is cutting speed (Vc) of 199.93 m/min, feed rate (f) of 0.18 mm, cutting depth (ap) of 0.49 mm, and nanofluid mass fraction (wt) of 0.51%. The hybrid nanofluid can significantly enhance heat exchange capacity and lubrication performance, thereby improving machining characteristics. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 9441 KB  
Article
Tensile Properties of Aluminum Matrix Composites Produced via a Nitrogen-Induced Self-Forming Process
by Kon-Bae Lee, Kanhu C. Nayak, Cheol-Hwee Shim, Hye-In Lee, Se-Hoon Kim, Hyun-Joo Choi and Jae-Pyoung Ahn
J. Compos. Sci. 2023, 7(11), 457; https://doi.org/10.3390/jcs7110457 - 2 Nov 2023
Cited by 4 | Viewed by 2426
Abstract
This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products [...] Read more.
This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products produced via the liquid process. Additionally, this process has the freedom of choice of the reinforcement phase and the homogeneous dispersibility of the powder process. Compared to commercial monolithic 6061 alloys, 6061 aluminum alloy matrix composites exhibit increased Young’s modulus, yield strength, and ultimate tensile strength by 59%, 66%, and 81%, respectively. This study also compares the tensile properties of AMCs with different matrix compositions, including 2009 and 7050 aluminum alloys. The study shows that AMCs produced using the nitride-induced self-forming aluminum composite (NISFAC) process exhibit comparable or superior tensile properties to those obtained using existing commercial powder metallurgy (P/M) processes. Full article
Show Figures

Graphical abstract

14 pages, 47686 KB  
Article
Effect of Solution Heat Treatment on the Microstructure and Microhardness of 7050 Aluminum Alloy
by Qingwen Qi, Min Li, Yonghua Duan, Hengyong Bu and Mengnie Li
Metals 2023, 13(11), 1819; https://doi.org/10.3390/met13111819 - 28 Oct 2023
Cited by 13 | Viewed by 4273
Abstract
Today, 7xxx aluminum alloys are widely used in aerospace and other fields due to their excellent properties such as low density, high specific strength, and good processing performance. The heat treatment process of 7xxx aluminum alloy is crucial in controlling the strengthening phases [...] Read more.
Today, 7xxx aluminum alloys are widely used in aerospace and other fields due to their excellent properties such as low density, high specific strength, and good processing performance. The heat treatment process of 7xxx aluminum alloy is crucial in controlling the strengthening phases and grain size, which is a significant way to enhance the alloy’s performance. In this study, solution heat treatment tests of 7050 aluminum alloys were carried out at different temperatures, ranging from 440 °C to 470 °C, with a holding time ranging from 0.5 h to 8 h, using a DIL 805A thermomechanical test machine. The microstructural evolution during the solution heat treatment was characterized using an optical microscope (OM), a scanning electron microscope (SEM), and a transmission electron microscope (TEM). The effects of the solution parameters on the alloy’s microhardness were analyzed using a digital Vickers microhardness tester. According to the ASTM E112-13 standard, The Anelli grain growth models were established to illustrate the grain size evolution during solution heat treatment, and a modified Anelli grain growth model was established. The results indicated that the grain size significantly increases with the increase in the solution heat treatment time and temperature. The Anelli grain growth model can illustrate the phenomenon of grain growth more accurately in the solution heat treatment process of 7050 aluminum alloy. It was found that prolonging the time and elevating the temperature of the solution heat treatment reduced the microhardness of the aluminum alloy because of the dissolution of the precipitates. Full article
Show Figures

Graphical abstract

16 pages, 5461 KB  
Article
An Investigation of the High-Speed Machinability of 7050 Aluminum Alloy Based on Different Prefabricated Crystal Orientations
by Chenbing Ni, Wei Lu, Youqiang Wang, Chengguo Zong, Dejian Liu and Guoliang Liu
Lubricants 2023, 11(9), 413; https://doi.org/10.3390/lubricants11090413 - 21 Sep 2023
Cited by 3 | Viewed by 1935
Abstract
This study investigated the high-speed cutting performance of 7050 aluminum alloy with prefabricated crystal orientations under dry-cutting conditions. Three specimens with different crystal orientations were prefabricated using pre-deformations of 10, 15, and 20%, and the effects of cutting parameters on cutting force, surface [...] Read more.
This study investigated the high-speed cutting performance of 7050 aluminum alloy with prefabricated crystal orientations under dry-cutting conditions. Three specimens with different crystal orientations were prefabricated using pre-deformations of 10, 15, and 20%, and the effects of cutting parameters on cutting force, surface morphology, and tool wear were analyzed. The results showed that the three-dimensional cutting force initially increased and then decreased with the increase in cutting speed. In addition, the three-dimensional cutting force increased with the increase in cutting depth and feed rate. Under the same cutting parameters, the three-dimensional cutting force of 7050 aluminum alloy was in the following order: 20% pre-deformation > 10% pre-deformation > 15% pre-deformation. During high-speed cutting, different degrees of plowing, bulging, and sticky chips appeared on the machined surface, and the surface morphology of the 15% pre-deformed 7050 aluminum alloy was better than that of the other two pre-deformed 7050 aluminum alloys. During the high-speed cutting process, tool wear mainly occurred in the forms of collapse edge, adhesion, flaking, and breakage, and wear mechanisms were usually adhesive, diffusion, and oxidation wears. Under the same cutting parameters, the tool wear of the 15% pre-deformed 7050 aluminum alloy was lighter. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

12 pages, 6944 KB  
Article
Effect of Cold Pressing Deformation on Microstructure and Residual Stress of 7050 Aluminum Alloy Die Forgings
by Huiqu Li, Liang Wang, Weiwei He, Liqiang Cheng, Junzhou Chen and Linna Yi
Materials 2023, 16(14), 5129; https://doi.org/10.3390/ma16145129 - 20 Jul 2023
Cited by 2 | Viewed by 1818
Abstract
Large-scale, high-strength aluminum alloy forgings are essential components in the aerospace industry, with benefits including increasing strength and decreasing weight. Accurate shape-property control is the secret to forging quality. This study uses the alloy 7050 to experimentally evaluate the parametric influence of cold [...] Read more.
Large-scale, high-strength aluminum alloy forgings are essential components in the aerospace industry, with benefits including increasing strength and decreasing weight. Accurate shape-property control is the secret to forging quality. This study uses the alloy 7050 to experimentally evaluate the parametric influence of cold compression on residual stress and mechanical characteristics. The evolutions of mechanical properties, microstructure and residual stress are theoretically studied using various cold compression strains from 1% to 5% on an equivalent part, of which the results are further applied on a complicated rib-structured die forging. It is demonstrated that increasing the compression strain reduces the tensile strength of the material, but has little impact on conductivity and fracture toughness. According to the TEM results, compression also encourages the precipitation and growth of precipitated phases, particularly in positions with high dislocation densities after aging. Cold compression significantly reduces residual stress; nevertheless, as compression strain increases, residual stress first decreases and then increases. With the use of rib-structured forging, it is observed that the compression strain for 7050 aluminum alloy ranges from 2% to 4%, and the combined pressing method of the rib and web improves the uniformity of residual stress. Full article
Show Figures

Figure 1

Back to TopTop