Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = C-peptide immunoreactivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 551 KB  
Article
Association of Cord Blood Metabolic Biomarkers (Leptin, Adiponectin, IGF-1) with Fetal Adiposity Across Gestation
by Junko Tamai, Satoru Ikenoue, Keisuke Akita, Keita Hasegawa, Toshimitsu Otani, Marie Fukutake, Yoshifumi Kasuga and Mamoru Tanaka
Int. J. Mol. Sci. 2025, 26(14), 6926; https://doi.org/10.3390/ijms26146926 - 18 Jul 2025
Viewed by 377
Abstract
Childhood obesity is a substantial health problem worldwide. The origin of obesity (increased adiposity) can be partly traced back to intrauterine life. However, the determinants of fetal fat deposition remain unclear. This study investigated the association between cord blood adipocytokines related to lipid [...] Read more.
Childhood obesity is a substantial health problem worldwide. The origin of obesity (increased adiposity) can be partly traced back to intrauterine life. However, the determinants of fetal fat deposition remain unclear. This study investigated the association between cord blood adipocytokines related to lipid metabolism (leptin, adiponectin, and insulin-like growth factor-1 [IGF-1]) and fetal adiposity during gestation. A prospective study was conducted in a cohort of 94 singleton pregnancies. Fetal ultrasonography was performed at 24, 30, and 36 weeks of gestation. Estimated fetal adiposity (EFA) was calculated by integrating measurements of cross-sectional arm and thigh fat area percentages and anterior abdominal wall thickness. Plasma cytokine levels and C-peptide immunoreactivity (as a proxy for fetal insulin resistance) were evaluated in cord blood samples obtained at delivery. The associations of cord blood leptin, adiponectin and IGF-1 levels with EFA at 24, 30, and 36 weeks were determined by multiple linear regression, adjusted for potential covariates. The multivariate analyses indicated that leptin was significantly correlated with EFA at 30 and 36 weeks. Leptin was also positively correlated with C-peptide immunoreactivity in the umbilical cord. Cord adiponectin levels were not associated with EFA across gestation. Cord IGF-1 levels were significantly correlated with EFA and estimated fetal body weight (EFW) at 36 weeks. In conclusion, cord leptin was associated with EFA at 30 and 36 weeks, and IGF-1 was associated with EFA at 36 and EFW at 36 weeks. In Conclusion, cord leptin was associated with EFA at 30 and 36 weeks, and IGF-1 was associated with EFA and EFW at 36 weeks. Considering the effects of leptin and IGF-1 on fetal insulin resistance and lipid metabolism, increased levels of leptin and IGF-1 are potential plasma biomarkers of increased fetal adiposity, which may predispose to infant obesity and metabolic dysfunction in later life. Full article
(This article belongs to the Special Issue Obesity: From Molecular Mechanisms to Clinical Aspects)
Show Figures

Figure 1

27 pages, 26584 KB  
Article
Detection of Insulin in Insulin-Deficient Islets of Patients with Type 1 Diabetes
by Yuliya Krivova, Alexandra Proshchina, Dmitry Otlyga, Anastasia Kharlamova and Sergey Saveliev
Life 2025, 15(1), 125; https://doi.org/10.3390/life15010125 - 19 Jan 2025
Viewed by 1474
Abstract
Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level [...] Read more.
Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion. The present study aimed to test the ability of various antibodies to detect insulin in insulin-deficient islets of T1D patients. Pancreatic autopsies from two children with recent-onset T1D, two adults with longstanding T1D, and three control subjects were examined using double immunofluorescent labeling with antibodies to insulin, glucagon and somatostatin. Immunoreactivity to insulin in glucagon+ cells of insulin-deficient islets was revealed using polyclonal antibodies and monoclonal antibodies simultaneously recognizing insulin and proinsulin. Along with this, immunoreactivity to insulin was observed in the majority of glucagon+ cells of insulin-containing islets of control subjects and children with recent-onset T1D. These results suggest that islet α-cells may contain insulin and/or other insulin-like proteins (proinsulin, C-peptide). Future studies are needed to evaluate the role of α-cells in insulin secretion and diabetes pathogenesis. Full article
Show Figures

Figure 1

18 pages, 4374 KB  
Article
Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus
by Mona Yassine, Soha A. Hassan, Lea Aylin Yücel, Fathima Faiba A. Purath, Horst-Werner Korf, Charlotte von Gall and Amira A. H. Ali
Biomedicines 2024, 12(10), 2202; https://doi.org/10.3390/biomedicines12102202 - 27 Sep 2024
Cited by 2 | Viewed by 2612
Abstract
Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver–brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: [...] Read more.
Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver–brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: homeostatic regulation and the circadian system. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the key component of the circadian system. It generates circadian rhythms in physiology and behavior and controls their entrainment to the surrounding light/dark cycle. Neuron–glia interactions are crucial for the functional integrity of the SCN. Under pathological conditions, oxidative stress can compromise these interactions and thus circadian timekeeping and entrainment. To date, little is known about the impact of peripheral pathologies such as hepatocellular carcinoma (HCC) on SCN. Materials and Methods: In this study, HCC was induced in adult male mice. The key neuropeptides (vasoactive intestinal peptide: VIP, arginine vasopressin: AVP), an essential component of the molecular clockwork (Bmal1), markers for activity of neurons (c-Fos), astrocytes (GFAP), microglia (IBA1), as well as oxidative stress (8-OHdG) in the SCN were analyzed by immunohistochemistry at four different time points in HCC-bearing compared to control mice. Results: The immunoreactions for VIP, Bmal1, GFAP, IBA1, and 8-OHdG were increased in HCC mice compared to control mice, especially during the activity phase. In contrast, c-Fos was decreased in HCC mice, especially during the late inactive phase. Conclusions: Our data suggest that HCC affects the circadian system at the level of SCN. This involves an alteration of neuropeptides, neuronal activity, Bmal1, activation of glia cells, and oxidative stress in the SCN. Full article
(This article belongs to the Special Issue Understanding Diseases Affecting the Central Nervous System)
Show Figures

Graphical abstract

17 pages, 7077 KB  
Article
Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses
by Corinna Höfling, Luise Ulrich, Sina Burghardt, Philippa Donkersloot, Michael Opitz, Stefanie Geissler, Stephan Schilling, Holger Cynis, Dominik Michalski and Steffen Roßner
Cells 2024, 13(17), 1412; https://doi.org/10.3390/cells13171412 - 23 Aug 2024
Viewed by 1401
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, [...] Read more.
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

23 pages, 6722 KB  
Article
SMA20/PMIS2 Is a Rapidly Evolving Sperm Membrane Alloantigen with Possible Species-Divergent Function in Fertilization
by Nathaly Cormier, Asha E. Worsham, Kinsey A. Rich and Daniel M. Hardy
Int. J. Mol. Sci. 2024, 25(7), 3652; https://doi.org/10.3390/ijms25073652 - 25 Mar 2024
Cited by 1 | Viewed by 1595
Abstract
Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 [...] Read more.
Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4aHaus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals. Full article
Show Figures

Figure 1

18 pages, 2347 KB  
Article
Supplementary Effects of Allium hookeri Extract on Glucose Tolerance in Prediabetic Subjects and C57BL/KsJ-db/db Mice
by Ji-Su Kim, Hyun-Ju Kim, Eun-Byeol Lee, Ji-Hye Choi, Jieun Jung, Hwan-Hee Jang, Shin-Young Park, Ki-Chan Ha, Yu-Kyung Park, Jong-Cheon Joo and Sung-Hyen Lee
Pharmaceuticals 2023, 16(10), 1364; https://doi.org/10.3390/ph16101364 - 27 Sep 2023
Cited by 1 | Viewed by 2079
Abstract
Allium hookeri (AH) has been used as a nutritional and medicinal food in Asia for many years. Our previous studies have described its anti-diabetic, anti-obesity, and anti-inflammatory activities in animal models and prediabetes. This study investigated whether AH could improve glycemia by modulating [...] Read more.
Allium hookeri (AH) has been used as a nutritional and medicinal food in Asia for many years. Our previous studies have described its anti-diabetic, anti-obesity, and anti-inflammatory activities in animal models and prediabetes. This study investigated whether AH could improve glycemia by modulating insulin secretion in prediabetic subjects through an in-depth study. Eighty prediabetic subjects (100 ≤ fasting plasma glucose < 140 mg/dL) were randomly assigned to a placebo (n = 40) group or an ethanol AH extract (500 mg/day, n = 40) group for 12 weeks. Dietary intake and physical activity, blood glucose (an oral glucose tolerance test for 120 min), insulin (insulin response to oral glucose for 120 min), area under the curve (AUC) of glucose or insulin after oral glucose intake, insulin sensitivity markers, C-peptide, adiponectin, glycated hemoglobin A1c (HbA1c) levels, hematological tests (WBC, RBC, hemoglobin, hematocrit, and platelet count), blood biochemical parameters (ALP, AST, total bilirubin, total protein, albumin, gamma-GT, BUN, creatinine, LD, CK, and hs-CRP), and urine parameters (specific gravity and pH) were examined at both baseline and 12 weeks after supplementation with placebo or AH capsules. Fifty-eight participants (placebo group: 20 men and 10 women; AH group: 13 men and 15 women) completed the study. AH supplementation moderately reduced postprandial blood glucose at 60 min (−6.14 mg/dL, p = 0.061), postprandial insulin levels at 90 min (−16.69 µU/mL, p = 0.017), the glucose AUC at 90 min (−412.52 mg*min/dL, p = 0.021), as well as the insulin AUC at 90 min (−978.77 µU*min/mL, p = 0.021) and 120 min (−1426.41 µU*min/mL, p = 0.015) when compared with the placebo group. However, there were no effects of AH on dietary intake and physical activity; HOMA index; HbAlc; C-peptide; or adiponectin, hematological-, blood biochemical-, and urinary markers. To confirm the effects of AH extract on blood glucose insulin sensitivity, C57BL/6J or C57BL/KsJ-db/db mice were used (n = 8/group). Body weight, fasting plasma glucose level, lipid profiles, liver and renal function, pancreatic histology, and insulin immunoreactivity were assessed. In the diabetic db/db mice, hyperglycemia, which was accompanied by an increase in insulin secretion in diabetic mice, was significantly reduced by AH treatment, resulting in the alleviation of β-cell overcompensation and insulin resistance. We confirmed that AH supplementation can effectively control blood glucose and insulin levels by improving insulin sensitivity and may be a potential agent for glycemic control in subjects with prediabetes and type 2 diabetes mellitus. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

12 pages, 2916 KB  
Article
Characterization of a Bioactive Peptide T14 in the Human and Rodent Substantia Nigra: Implications for Neurodegenerative Disease
by Susan Adele Greenfield, Giovanni Ferrati, Clive W. Coen, Auguste Vadisiute, Zoltan Molnár, Sara Garcia-Rates, Sally Frautschy and Gregory M. Cole
Int. J. Mol. Sci. 2022, 23(21), 13119; https://doi.org/10.3390/ijms232113119 - 28 Oct 2022
Cited by 8 | Viewed by 2771
Abstract
The substantia nigra is generally considered to show significant cell loss not only in Parkinson’s but also in Alzheimer’s disease, conditions that share several neuropathological traits. An interesting feature of this nucleus is that the pars compacta dopaminergic neurons contain acetylcholinesterase (AChE). Independent [...] Read more.
The substantia nigra is generally considered to show significant cell loss not only in Parkinson’s but also in Alzheimer’s disease, conditions that share several neuropathological traits. An interesting feature of this nucleus is that the pars compacta dopaminergic neurons contain acetylcholinesterase (AChE). Independent of its enzymatic role, this protein is released from pars reticulata dendrites, with effects that have been observed in vitro, ex vivo and in vivo. The part of the molecule responsible for these actions has been identified as a 14-mer peptide, T14, cleaved from the AChE C-terminus and acting at an allosteric site on alpha-7 nicotinic receptors, with consequences implicated in neurodegeneration. Here, we show that free T14 is co-localized with tyrosine hydroxylase in rodent pars compacta neurons. In brains with Alzheimer’s pathology, the T14 immunoreactivity in these neurons increases in density as their number decreases with the progression of the disease. To explore the functional implications of raised T14 levels in the substantia nigra, the effect of exogenous peptide on electrically evoked neuronal activation was tested in rat brain slices using optical imaging with a voltage-sensitive dye (Di-4-ANEPPS). A significant reduction in the activation response was observed; this was blocked by the cyclized variant of T14, NBP14. In contrast, no such effect of the peptide was seen in the striatum, a region lacking the T14 target, alpha-7 receptors. These findings add to the accumulating evidence that T14 is a key signaling molecule in neurodegenerative disorders and that its antagonist NBP14 has therapeutic potential. Full article
(This article belongs to the Special Issue Molecular Advances in Alzheimer's Disease)
Show Figures

Figure 1

21 pages, 42843 KB  
Article
The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling
by Romina Mancinelli, Ludovica Ceci, Lindsey Kennedy, Heather Francis, Vik Meadows, Lixian Chen, Guido Carpino, Konstantina Kyritsi, Nan Wu, Tianhao Zhou, Keisaku Sato, Luigi Pannarale, Shannon Glaser, Sanjukta Chakraborty, Gianfranco Alpini, Eugenio Gaudio, Paolo Onori and Antonio Franchitto
Cells 2022, 11(9), 1591; https://doi.org/10.3390/cells11091591 - 9 May 2022
Cited by 14 | Viewed by 4436
Abstract
Background & aims: Cholangiocytes are the target cells of liver diseases that are characterized by biliary senescence (evidenced by enhanced levels of senescence-associated secretory phenotype, SASP, e.g., TGF-β1), and liver inflammation and fibrosis accompanied by altered bile acid (BA) homeostasis. Taurocholic acid (TC) [...] Read more.
Background & aims: Cholangiocytes are the target cells of liver diseases that are characterized by biliary senescence (evidenced by enhanced levels of senescence-associated secretory phenotype, SASP, e.g., TGF-β1), and liver inflammation and fibrosis accompanied by altered bile acid (BA) homeostasis. Taurocholic acid (TC) stimulates biliary hyperplasia by activation of 3′,5′-cyclic cyclic adenosine monophosphate (cAMP) signaling, thereby preventing biliary damage (caused by cholinergic/adrenergic denervation) through enhanced liver angiogenesis. Also: (i) α-calcitonin gene-related peptide (α-CGRP, which activates the calcitonin receptor-like receptor, CRLR), stimulates biliary proliferation/senescence and liver fibrosis by enhanced biliary secretion of SASPs; and (ii) knock-out of α-CGRP reduces these phenotypes by decreased cAMP levels in cholestatic models. We aimed to demonstrate that TC effects on liver phenotypes are dependent on changes in the α-CGRP/CALCRL/cAMP/PKA/ERK1/2/TGF-β1/VEGF axis. Methods: Wild-type and α-CGRP−/− mice were fed with a control (BAC) or TC diet for 1 or 2 wk. We measured: (i) CGRP levels by both ELISA kits in serum and by qPCR in isolated cholangiocytes (CALCA gene for α-CGRP); (ii) CALCRL immunoreactivity by immunohistochemistry (IHC) in liver sections; (iii) liver histology, intrahepatic biliary mass, biliary senescence (by β-GAL staining and double immunofluorescence (IF) for p16/CK19), and liver fibrosis (by Red Sirius staining and double IF for collagen/CK19 in liver sections), as well as by qPCR for senescence markers in isolated cholangiocytes; and (iv) phosphorylation of PKA/ERK1/2, immunoreactivity of TGF-β1/TGF- βRI and angiogenic factors by IHC/immunofluorescence in liver sections and qPCR in isolated cholangiocytes. We measured changes in BA composition in total liver by liquid chromatography/mass spectrometry. Results: TC feeding increased CALCA expression, biliary damage, and liver inflammation and fibrosis, as well as phenotypes that were associated with enhanced immunoreactivity of the PKA/ERK1/2/TGF-β1/TGF-βRI/VEGF axis compared to BAC-fed mice and phenotypes that were reversed in α-CGRP−/− mice fed TC coupled with changes in hepatic BA composition. Conclusion: Modulation of the TC/ α-CGRP/CALCRL/PKA/ERK1/2/TGF-β1/VEGF axis may be important in the management of cholangiopathies characterized by BA accumulation. Full article
(This article belongs to the Special Issue New Aspects and Mechanisms in Liver Diseases)
Show Figures

Figure 1

16 pages, 1991 KB  
Article
Inhibition of SGLT2 Preserves Function and Promotes Proliferation of Human Islets Cells In Vivo in Diabetic Mice
by Daniel Karlsson, Andrea Ahnmark, Alan Sabirsh, Anne-Christine Andréasson, Peter Gennemark, Ann-Sofie Sandinge, Lihua Chen, Björn Tyrberg, Daniel Lindén and Maria Sörhede Winzell
Biomedicines 2022, 10(2), 203; https://doi.org/10.3390/biomedicines10020203 - 18 Jan 2022
Cited by 6 | Viewed by 3454
Abstract
Dapagliflozin is a sodium-glucose co-transporter 2 (SGLT2) inhibitor used for the treatment of diabetes. This study examines the effects of dapagliflozin on human islets, focusing on alpha and beta cell composition in relation to function in vivo, following treatment of xeno-transplanted diabetic mice. [...] Read more.
Dapagliflozin is a sodium-glucose co-transporter 2 (SGLT2) inhibitor used for the treatment of diabetes. This study examines the effects of dapagliflozin on human islets, focusing on alpha and beta cell composition in relation to function in vivo, following treatment of xeno-transplanted diabetic mice. Mouse beta cells were ablated by alloxan, and dapagliflozin was provided in the drinking water while controls received tap water. Body weight, food and water intake, plasma glucose, and human C-peptide levels were monitored, and intravenous arginine/glucose tolerance tests (IVarg GTT) were performed to evaluate islet function. The grafted human islets were isolated at termination and stained for insulin, glucagon, Ki67, caspase 3, and PDX-1 immunoreactivity in dual and triple combinations. In addition, human islets were treated in vitro with dapagliflozin at different glucose concentrations, followed by insulin and glucagon secretion measurements. SGLT2 inhibition increased the animal survival rate and reduced plasma glucose, accompanied by sustained human C-peptide levels and improved islet response to glucose/arginine. SGLT2 inhibition increased both alpha and beta cell proliferation (Ki67+glucagon+ and Ki67+insulin+) while apoptosis was reduced (caspase3+glucagon+ and caspase3+insulin+). Alpha cells were fewer following inhibition of SGLT2 with increased glucagon/PDX-1 double-positive cells, a marker of alpha to beta cell transdifferentiation. In vitro treatment of human islets with dapagliflozin had no apparent impact on islet function. In summary, SGLT2 inhibition supported human islet function in vivo in the hyperglycemic milieu and potentially promoted alpha to beta cell transdifferentiation, most likely through an indirect mechanism. Full article
(This article belongs to the Special Issue Targeting Pancreatic Islets from a Therapeutic Perspective)
Show Figures

Figure 1

16 pages, 4837 KB  
Article
Synthesis of Human Bone Morphogenetic Protein-2 (hBMP-2) in E. coli Periplasmic Space: Its Characterization and Preclinical Testing
by João E. Oliveira, Miriam F. Suzuki, Renata Damiani, Eliana R. Lima, Kleicy C. Amaral, Anderson M. S. Santos, Geraldo S. Magalhães, Leonardo P. Faverani, Luís A. V. D. Pereira and Paolo Bartolini
Cells 2021, 10(12), 3525; https://doi.org/10.3390/cells10123525 - 14 Dec 2021
Cited by 3 | Viewed by 3882
Abstract
Human BMP-2, a homodimeric protein that belongs to the TGF- β family, is a recognized osteoinductor due to its capacity of inducing bone regeneration and ectopic bone formation. The administration of its recombinant form is an alternative to autologous bone grafting. A variety [...] Read more.
Human BMP-2, a homodimeric protein that belongs to the TGF- β family, is a recognized osteoinductor due to its capacity of inducing bone regeneration and ectopic bone formation. The administration of its recombinant form is an alternative to autologous bone grafting. A variety of E. coli-derived hBMP-2 has been synthesized through refolding of cytoplasmic inclusion bodies. The present work reports the synthesis, purification, and characterization of periplasmic hBMP-2, obtained directly in its correctly folded and authentic form, i.e., without the initial methionine typical of the cytoplasmic product that can induce undesired immunoreactivity. A bacterial expression vector was constructed including the DsbA signal peptide and the cDNA of hBMP-2. The periplasmic fluid was extracted by osmotic shock and analyzed via SDS-PAGE, Western blotting, and reversed-phase high-performance liquid chromatography (RP-HPLC). The purification was carried out by heparin affinity chromatography, followed by high-performance size-exclusion chromatography (HPSEC). HPSEC was used for qualitative and quantitative analysis of the final product, which showed >95% purity. The classical in vitro bioassay based on the induction of alkaline phosphatase activity in myoblastic murine C2C12 cells and the in vivo bioassay consisting of treating calvarial critical-size defects in rats confirmed its bioactivity, which matched the analogous literature data for hBMP-2. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

16 pages, 2211 KB  
Article
Homing Peptide-Based Targeting of Tenascin-C and Fibronectin in Endometriosis
by Lorena Simón-Gracia, Kristina Kiisholts, Vilma Petrikaitė, Allan Tobi, Merli Saare, Prakash Lingasamy, Maire Peters, Andres Salumets and Tambet Teesalu
Nanomaterials 2021, 11(12), 3257; https://doi.org/10.3390/nano11123257 - 30 Nov 2021
Cited by 16 | Viewed by 4484
Abstract
The current diagnostic and therapeutic strategies for endometriosis are limited. Although endometriosis is a benign condition, some of its traits, such as increased cell invasion, migration, tissue inflammation, and angiogenesis are similar to cancer. Here we explored the application of homing peptides for [...] Read more.
The current diagnostic and therapeutic strategies for endometriosis are limited. Although endometriosis is a benign condition, some of its traits, such as increased cell invasion, migration, tissue inflammation, and angiogenesis are similar to cancer. Here we explored the application of homing peptides for precision delivery of diagnostic and therapeutic compounds to endometriotic lesions. First, we audited a panel of peptide phages for the binding to the cultured immortalized endometriotic epithelial 12Z and eutopic stromal HESC cell lines. The bacteriophages displaying PL1 peptide that engages with angiogenic extracellular matrix overexpressed in solid tumors showed the strongest binding to both cell lines. The receptors of PL1 peptide, tenascin C domain C (TNC-C) and fibronectin Extra Domain-B (Fn-EDB), were expressed in both cells. Silver nanoparticles functionalized with synthetic PL1 peptide showed specific internalization in 12Z and HESC cells. Treatment with PL1-nanoparticles loaded with the potent antimitotic drug monomethyl auristatin E decreased the viability of endometriotic cells in 2D and 3D cultures. Finally, PL1-nanoparticless bound to the cryosections of clinical peritoneal endometriotic lesions in the areas positive for TNC-C and Fn-EDB immunoreactivities and not to sections of normal endometrium. Our findings suggest potential applications for PL1-guided nanoparticles in precision diagnosis and therapy of endometriosis. Full article
Show Figures

Graphical abstract

18 pages, 2369 KB  
Review
Identification and Affinity Determination of Protein-Antibody and Protein-Aptamer Epitopes by Biosensor-Mass Spectrometry Combination
by Loredana-Mirela Lupu, Pascal Wiegand, Daria Holdschick, Delia Mihoc, Stefan Maeser, Stephan Rawer, Friedemann Völklein, Ebrahim Malek, Frederik Barka, Sascha Knauer, Christina Uth, Julia Hennermann, Wolfgang Kleinekofort, Andreas Hahn, Günes Barka and Michael Przybylski
Int. J. Mol. Sci. 2021, 22(23), 12832; https://doi.org/10.3390/ijms222312832 - 27 Nov 2021
Cited by 15 | Viewed by 5278
Abstract
Analytical methods for molecular characterization of diagnostic or therapeutic targets have recently gained high interest. This review summarizes the combination of mass spectrometry and surface plasmon resonance (SPR) biosensor analysis for identification and affinity determination of protein interactions with antibodies and DNA-aptamers. The [...] Read more.
Analytical methods for molecular characterization of diagnostic or therapeutic targets have recently gained high interest. This review summarizes the combination of mass spectrometry and surface plasmon resonance (SPR) biosensor analysis for identification and affinity determination of protein interactions with antibodies and DNA-aptamers. The binding constant (KD) of a protein–antibody complex is first determined by immobilizing an antibody or DNA-aptamer on an SPR chip. A proteolytic peptide mixture is then applied to the chip, and following removal of unbound material by washing, the epitope(s) peptide(s) are eluted and identified by MALDI-MS. The SPR-MS combination was applied to a wide range of affinity pairs. Distinct epitope peptides were identified for the cardiac biomarker myoglobin (MG) both from monoclonal and polyclonal antibodies, and binding constants determined for equine and human MG provided molecular assessment of cross immunoreactivities. Mass spectrometric epitope identifications were obtained for linear, as well as for assembled (“conformational”) antibody epitopes, e.g., for the polypeptide chemokine Interleukin-8. Immobilization using protein G substantially improved surface fixation and antibody stabilities for epitope identification and affinity determination. Moreover, epitopes were successfully determined for polyclonal antibodies from biological material, such as from patient antisera upon enzyme replacement therapy of lysosomal diseases. The SPR-MS combination was also successfully applied to identify linear and assembled epitopes for DNA–aptamer interaction complexes of the tumor diagnostic protein C-Met. In summary, the SPR-MS combination has been established as a powerful molecular tool for identification of protein interaction epitopes. Full article
(This article belongs to the Special Issue New Insights on Mass Spectometry Applied to Bioscience)
Show Figures

Graphical abstract

19 pages, 3062 KB  
Article
Molecular and Functional Characterization of Pyrokinin-Like Peptides in the Western Tarnished Plant Bug Lygus hesperus (Hemiptera: Miridae)
by J. Joe Hull, Colin S. Brent, Man-Yeon Choi, Zsanett Mikó, József Fodor and Adrien Fónagy
Insects 2021, 12(10), 914; https://doi.org/10.3390/insects12100914 - 6 Oct 2021
Cited by 6 | Viewed by 3281
Abstract
The pyrokinin (PK) family of insect neuropeptides, characterized by C termini consisting of either WFGPRLamide (i.e., PK1) or FXPRLamide (i.e., PK2), are encoded on the capa and pk genes. Although implicated in diverse biological functions, characterization of PKs in hemipteran pests has been [...] Read more.
The pyrokinin (PK) family of insect neuropeptides, characterized by C termini consisting of either WFGPRLamide (i.e., PK1) or FXPRLamide (i.e., PK2), are encoded on the capa and pk genes. Although implicated in diverse biological functions, characterization of PKs in hemipteran pests has been largely limited to genomic, transcriptomic, and/or peptidomic datasets. The Lygus hesperus (western tarnished plant bug) PK transcript encodes a prepropeptide predicted to yield three PK2 FXPRLamide-like peptides with C-terminal sequences characterized by FQPRSamide (LyghePKa), FAPRLamide (LyghePKb), and a non-amidated YSPRF. The transcript is expressed throughout L. hesperus development with greatest abundance in adult heads. PRXamide-like immunoreactivity, which recognizes both pk- and capa-derived peptides, is localized to cells in the cerebral ganglia, gnathal ganglia/suboesophageal ganglion, thoracic ganglia, and abdominal ganglia. Immunoreactivity in the abdominal ganglia is largely consistent with capa-derived peptide expression, whereas the atypical fourth pair of immunoreactive cells may reflect pk-based expression. In vitro activation of a PK receptor heterologously expressed in cultured insect cells was only observed in response to LyghePKb, while no effects were observed with LyghePKa. Similarly, in vivo pheromonotropic effects were only observed following LyghePKb injections. Comparison of PK2 prepropeptides from multiple hemipterans suggests mirid-specific diversification of the pk gene. Full article
(This article belongs to the Collection Insect Signals)
Show Figures

Figure 1

24 pages, 15917 KB  
Article
Cross-Talk of Toll-Like Receptor 5 and Mu-Opioid Receptor Attenuates Chronic Constriction Injury-Induced Mechanical Hyperalgesia through a Protein Kinase C Alpha-Dependent Signaling
by Ching Chang, Hung-Kai Liu, Chao-Bin Yeh, Ming-Lin Yang, Wen-Chieh Liao, Chiung-Hui Liu and To-Jung Tseng
Int. J. Mol. Sci. 2021, 22(4), 1891; https://doi.org/10.3390/ijms22041891 - 14 Feb 2021
Cited by 6 | Viewed by 4275
Abstract
Recently, Toll-like receptors (TLRs), a family of pattern recognition receptors, are reported as potential modulators for neuropathic pain; however, the desired mechanism is still unexplained. Here, we operated on the sciatic nerve to establish a pre-clinical rodent model of chronic constriction injury (CCI) [...] Read more.
Recently, Toll-like receptors (TLRs), a family of pattern recognition receptors, are reported as potential modulators for neuropathic pain; however, the desired mechanism is still unexplained. Here, we operated on the sciatic nerve to establish a pre-clinical rodent model of chronic constriction injury (CCI) in Sprague-Dawley rats, which were assigned into CCI and Decompression groups randomly. In Decompression group, the rats were performed with nerve decompression at post-operative week 4. Mechanical hyperalgesia and mechanical allodynia were obviously attenuated after a month. Toll-like receptor 5 (TLR5)-immunoreactive (ir) expression increased in dorsal horn, particularly in the inner part of lamina II. Additionally, substance P (SP) and isolectin B4 (IB4)-ir expressions, rather than calcitonin-gene-related peptide (CGRP)-ir expression, increased in their distinct laminae. Double immunofluorescence proved that increased TLR5-ir expression was co-expressed mainly with IB4-ir expression. Through an intrathecal administration with FLA-ST Ultrapure (a TLR5 agonist, purified flagellin from Salmonella Typhimurium, only the CCI-induced mechanical hyperalgesia was attenuated dose-dependently. Moreover, we confirmed that mu-opioid receptor (MOR) and phospho-protein kinase Cα (pPKCα)-ir expressions but not phospho-protein kinase A RII (pPKA RII)-ir expression, increased in lamina II, where they mostly co-expressed with IB4-ir expression. Go 6976, a potent protein kinase C inhibitor, effectively reversed the FLA-ST Ultrapure- or DAMGO-mediated attenuated trend towards mechanical hyperalgesia by an intrathecal administration in CCI rats. In summary, our current findings suggest that nerve decompression improves CCI-induced mechanical hyperalgesia that might be through the cross-talk of TLR5 and MOR in a PKCα-dependent manner, which opens a novel opportunity for the development of analgesic therapeutics in neuropathic pain. Full article
(This article belongs to the Special Issue The Multiple Mechanisms Underlying Neuropathic Pain)
Show Figures

Figure 1

14 pages, 2232 KB  
Review
In Vitro Modeling of Bradykinin-Mediated Angioedema States
by François Marceau, Hélène Bachelard, Xavier Charest-Morin, Jacques Hébert and Georges E. Rivard
Pharmaceuticals 2020, 13(9), 201; https://doi.org/10.3390/ph13090201 - 19 Aug 2020
Cited by 4 | Viewed by 4922
Abstract
Kinins (peptides related to bradykinin, BK) are formed from circulating substrates, the kininogens, by the action of two proteases, the kallikreins. The only clinical application of a BK receptor ligand, the B2 receptor antagonist icatibant, is the treatment of the rare hereditary [...] Read more.
Kinins (peptides related to bradykinin, BK) are formed from circulating substrates, the kininogens, by the action of two proteases, the kallikreins. The only clinical application of a BK receptor ligand, the B2 receptor antagonist icatibant, is the treatment of the rare hereditary angioedema (HAE) caused by the deficiency of C1-esterase inhibitor (C1-INH). Less common forms of HAE (genetic variants of factor XII, plasminogen, kininogen) are presumably mediated by increased BK formation. Acquired forms of BK-mediated angioedema, such as that associated with angiotensin-I converting enzyme (ACE) inhibition, are also known. Antibody-based analytical techniques are briefly reviewed, and support that kinins are extremely short-lived, prominently cleared by ACE. Despite evidence of continuous activation of the kallikrein–kinin system in HAE, patients are not symptomatic most of the time and their blood or plasma obtained during remission does not generate excessive immunoreactive BK (iBK), suggesting effective homeostatic mechanisms. HAE-C1-INH and HAE-FXII plasmas are both hyperresponsive to fibrinolysis activation. On another hand, we suggested a role for the alternate tissue kallikrein–kinin system in patients with a plasminogen mutation. The role of the BK B1 receptor is still uncertain in angioedema states. iBK profiles under in vitro stimulation provide fresh insight into the physiopathology of angioedema. Full article
Show Figures

Figure 1

Back to TopTop