Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = Caspian Sea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 9639 KB  
Review
Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards
by Jean-Paul Deroin
Remote Sens. 2025, 17(16), 2814; https://doi.org/10.3390/rs17162814 - 14 Aug 2025
Viewed by 768
Abstract
The Aral Sea Basin (ASB), situated in Central Asia, serves as a prime example of a man-made environmental disaster. The practice of irrigation can be traced back to ancient times. However, the substantial water withdrawals that have occurred since the second half of [...] Read more.
The Aral Sea Basin (ASB), situated in Central Asia, serves as a prime example of a man-made environmental disaster. The practice of irrigation can be traced back to ancient times. However, the substantial water withdrawals that have occurred since the second half of the 20th century appear to have led to the irreversible drying up of the Aral Sea and the disruption of the flow of the Amu Darya and Syr Darya rivers. This study conducts a comprehensive review of satellite data from the past sixty years, drawing upon a selection of peer-reviewed papers available on Scopus. The selection of papers is conducted in accordance with a methodology that is predicated on the combination of keywords. The study focuses on geoscientific aspects, including the atmosphere, water resources, geology, and geological hazards. The primary sensors employed in this study were Terra-MODIS, NOAA-AVHRR, and the Landsat series. It is evident that certain data types, including radar data, US or Soviet archives, and very-high-resolution data such as OrbView-3, have seen minimal utilisation. Despite the restricted application of remote sensing data in publications addressing the ASB, remote sensing data offer a substantial repository for monitoring the desiccation of the Aral Sea, once the fourth largest continental body of water, and for the estimation of its water surface and volume. Nevertheless, the utilisation of remote sensing in publications concerning the Aral region remains limited, with less than 10% of publications employing this method. Sentinel-2 data has been utilised to illustrate the construction of the Qosh Tepa Canal in Afghanistan, a project which has been the subject of significant controversy, with a particular focus on the issue of water leakage. This predicament is indicative of the broader challenges confronting the region with regard to water management in the context of climate change. A comparison of the Aral Sea’s case history is drawn with analogous examples worldwide, including Lake Urmia, the Great Salt Lake, and, arguably more problematically, the Caspian Sea. Full article
Show Figures

Figure 1

12 pages, 5993 KB  
Article
Quantifying Threats to Fish Biodiversity of the South Caspian Basin in Iran
by Gohar Aghaie, Asghar Abdoli and Thomas H. White
Diversity 2025, 17(7), 480; https://doi.org/10.3390/d17070480 - 11 Jul 2025
Viewed by 349
Abstract
The South Caspian Basin of Iran (SCBI), a vital ecosystem for unique and valuable fish species, is under severe threats due to anthropogenic activities that are rapidly deteriorating its fish biodiversity. The initial step to effectively combat or mitigate threats to biodiversity is [...] Read more.
The South Caspian Basin of Iran (SCBI), a vital ecosystem for unique and valuable fish species, is under severe threats due to anthropogenic activities that are rapidly deteriorating its fish biodiversity. The initial step to effectively combat or mitigate threats to biodiversity is to precisely identify these threats. While such threats are often categorized qualitatively, there is a lack of a comparative quantitative assessment of their severity. This means that although we may have a general understanding of the threats, we do not have a clear picture of how serious they are relative to one another. This study aimed to quantify and prioritize these threats using a modified quantitative “SWOT” (Strengths, Weaknesses, Opportunities, Threats) analysis. Twenty multidisciplinary experts identified and evaluated 26 threats, and we used multivariate cluster analysis to categorize them as “High”, “Medium”, and “Low” based on their quantitative contributions to overall threat. Invasive non-native species and global warming emerged as the most significant threats, followed by resource exploitation, habitat destruction, and pollution. We then used this information to develop a “Situation Model” and “Results Chains” to guide responses to the threats. According to the Situation Model, these threats are interconnected, driven by factors such as population growth, unsustainable resource use, and climate change. To address these challenges, we propose the Results Chains, including two strategies focused on scientific research, land-use planning, public awareness, and community engagement. Prioritizing these actions is crucial for conserving the Caspian Sea’s unique fish fauna and ensuring the region’s ecological and economic sustainability. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

50 pages, 45416 KB  
Article
Uncovering Anthropogenic Changes in Small- and Medium-Sized River Basins of the Southwestern Caspian Sea Watershed: Global Information System and Remote Sensing Analysis Using Satellite Imagery and Geodatabases
by Vladimir Tabunshchik, Aleksandra Nikiforova, Nastasia Lineva, Roman Gorbunov, Tatiana Gorbunova, Ibragim Kerimov, Abouzar Nasiri and Cam Nhung Pham
Water 2025, 17(13), 2031; https://doi.org/10.3390/w17132031 - 6 Jul 2025
Viewed by 1135
Abstract
This study investigates the anthropogenic transformation of small- and medium-sized river basins within the Caspian Sea catchment. The basins of seven rivers—Sunzha, Sulak, Ulluchay, Karachay, Atachay, Haraz, and Gorgan—were selected as key study areas. For both the broader Caspian region, particularly its southwestern [...] Read more.
This study investigates the anthropogenic transformation of small- and medium-sized river basins within the Caspian Sea catchment. The basins of seven rivers—Sunzha, Sulak, Ulluchay, Karachay, Atachay, Haraz, and Gorgan—were selected as key study areas. For both the broader Caspian region, particularly its southwestern sector, and the selected study sites, trends in land cover types were analyzed, natural resource use practices were assessed, and population density dynamics were examined. Furthermore, a range of indices were calculated to quantify the degree of anthropogenic transformation, including the coefficient of anthropogenic transformation, the land degradation index, the urbanity index, the degree of anthropogenic transformation, coefficients of absolute and relative tension of the ecological and economic balance, and the natural protection coefficient. The study was conducted using geoinformation research methods and sets of geodata databases—the global LandScan population density database, the GHS Population Grid database, the ESRI land cover type dynamics database, and OpenStreetMap (OSM) data. The analysis was performed using the geoinformation programs QGIS and ArcGIS, and a large amount of literary and statistical data was additionally analyzed. It is shown that within the studied region, there has been a decrease in the number and density of the population, as a result of which the territories of river basins are experiencing an increasing anthropogenic impact, the woody type of land cover is decreasing, and the agricultural type is increasing. The most anthropogenically transformed river basins are Karachay, Haraz, and Gorgan. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

27 pages, 26505 KB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Viewed by 742
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

10 pages, 2123 KB  
Article
Assessing Local Distribution of Alien Ponto-Caspian Mysids in Lithuanian Waters, the Baltic Sea Basin: Do Sampling Method and Time Matter?
by Kęstutis Arbačiauskas, Aleksandras Rybakovas, Giedrė Višinskienė, Gintautas Vaitonis and Eglė Šidagytė-Copilas
Diversity 2025, 17(5), 307; https://doi.org/10.3390/d17050307 - 23 Apr 2025
Viewed by 328
Abstract
Alien Ponto-Caspian mysids Paramysis lacustris, Limnomysis benedeni and Hemimysis anomala were introduced into Lithuanian waters from Ukraine’s water reservoirs in the early 1960s. Their expansion from the primary introduction site in the Kaunas Reservoir, located on the Nemunas River, proceeded through secondary [...] Read more.
Alien Ponto-Caspian mysids Paramysis lacustris, Limnomysis benedeni and Hemimysis anomala were introduced into Lithuanian waters from Ukraine’s water reservoirs in the early 1960s. Their expansion from the primary introduction site in the Kaunas Reservoir, located on the Nemunas River, proceeded through secondary introductions and natural dispersal. The two species, P. lacustris and L. benedeni, are currently quite widespread in Lithuanian waters, whereas H. anomala has been observed exclusively in the Kaunas Reservoir until recently. Here, we present data from the most recent comprehensive survey of Ponto Caspian mysids and analyze the impact of sampling method on the likelihood of species detection. The results clearly indicate that the detection of larger-sized, more mobile species with good swimming abilities, such as P. lacustris, requires, in addition to conventional macroinvertebrate sampling, the use of devices designed to capture active nektobenthic animals. For this purpose, an epibenthic dredge or sledge is recommended. In contrast, the detection probability of the smaller-sized L. benedeni was not affected by the sampling method. The recent detection of the bloody-red mysid H. anomala near the Nemunas Delta suggests it may now be well-established in the area. However, due to its nocturnal lifestyle, the effective detection of this mysid requires dusk or nighttime sampling using equipment appropriate for capturing nektobenthic fauna. Full article
(This article belongs to the Section Freshwater Biodiversity)
Show Figures

Figure 1

16 pages, 6897 KB  
Article
Investigating the Spatiotemporal Variation in Extreme Precipitation Indices in Iran from 1990 to 2020
by Ebrahim Fattahi, Saeedeh Kamali, Ebrahim Asadi Oskouei and Maral Habibi
Water 2025, 17(8), 1227; https://doi.org/10.3390/w17081227 - 20 Apr 2025
Cited by 1 | Viewed by 1142
Abstract
This study examines the spatiotemporal characteristics of extreme precipitation indices in Iran. It analyzes data from 38 synoptic stations across the country, covering the period from 1990 to 2020, focusing on the 11 most common extreme precipitation indices defined by the Expert Team [...] Read more.
This study examines the spatiotemporal characteristics of extreme precipitation indices in Iran. It analyzes data from 38 synoptic stations across the country, covering the period from 1990 to 2020, focusing on the 11 most common extreme precipitation indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). The analysis employs the Mann–Kendall (M–K) trend test. The findings indicate that the indices PRCPTOT (annual total precipitation), R20 mm (very heavy precipitation days), R10 mm (heavy precipitation days), R25 mm (number of wet days), Rx1 day (maximum 1-day precipitation), Rx5 day (maximum 5-day precipitation), SDII (simple daily intensity index), R95p (very wet day precipitation), R99p (extremely wet day precipitation), and CWDs (consecutive wet days) showed the highest values in the northern and western regions of the country, particularly at stations like Ramsar, Hamedan, Ilam, Kermanshah, and Yasouj. Conversely, the eastern and southeastern parts of the country showed the lowest values for these indices. The Consecutive Dry Day (CDD) index exhibited the highest values at Zabol station (228 days) and Abadan station (193 days) in the southern region of the country. Generally, precipitation extremes in the western, northwestern, and Caspian Sea coasts showed an increasing trend, while the eastern, southeastern, and central parts of the country demonstrated a decreasing trend. The trend test results indicate significant mutations in all precipitation indices, except for SDII, with mutation points primarily occurring during the decade from 2000 to 2010. The magnitude of mutation for each index post-mutation is generally greater than before. This study provides valuable information for decision-makers in agriculture, food security, water, and the environment. It also serves as a resource for natural disaster prevention and mitigation. Full article
(This article belongs to the Special Issue Analysis of Extreme Precipitation Under Climate Change)
Show Figures

Figure 1

13 pages, 12987 KB  
Article
Environmental Suitability of Kazakhstan to Highly Pathogenic Avian Influenza Using Data on Eurasian Outbreaks, 2020–2024
by Asem Zh. Abenova, Yersyn Y. Mukhanbetkaliyev, Ablaikhan S. Kadyrov, Igor I. Sytnik, Alexander B. Shevtsov, Fedor I. Korennoy, Irene Iglesias Martin, Andres M. Perez and Sarsenbay K. Abdrakhmanov
Viruses 2025, 17(4), 574; https://doi.org/10.3390/v17040574 - 16 Apr 2025
Viewed by 1137
Abstract
Highly pathogenic avian influenza (HPAI) is a highly contagious disease of domestic, synanthropic, and wild birds that has demonstrated a sharp rise globally since 2020. This study intends to examine environmental and demographic factors most significantly associated with HPAI (H5N1 and H5N8) outbreaks [...] Read more.
Highly pathogenic avian influenza (HPAI) is a highly contagious disease of domestic, synanthropic, and wild birds that has demonstrated a sharp rise globally since 2020. This study intends to examine environmental and demographic factors most significantly associated with HPAI (H5N1 and H5N8) outbreaks in Kazakhstan, 2020–2024, and to identify areas of potential underreporting of the disease. Two ecological niche models were developed, namely an “occurrence model” (considering climatic and environmental factors influencing the likelihood of HPAI occurrence) and a “reporting model” (that assesses the probability of disease reporting based on human and poultry population demography). Both models were trained using outbreak locations in countries neighboring Kazakhstan (Afghanistan, China, Hong Kong, Iran, Iraq, Pakistan and Russia), and then tested using the HPAI outbreak locations in Kazakhstan. Results suggested a good fit for both models to Kazakhstani outbreaks (test AUC = 0.894 vs. training AUC = 0.915 for “occurrence model”, and test AUC = 0.869 vs. training AUC = 0.872 for “reporting model”). A cluster of high occurrence-to-reporting ratio was detected in the south-western region of Kazakhstan, close to the Caspian Sea, suggesting a need for enhancing surveillance efforts in this zone as well as in some other areas of Pavlodar, Northern Kazakhstan, Western Kazakhstan, Qyzylorda, and Eastern Kazakhstan. Results presented here will help inform the design and implementation of control strategies for HPAI in Kazakhstan with the ultimate goal of promoting disease prevention and control in the country. Full article
(This article belongs to the Special Issue Advances in Animal Influenza Virus Research: Third Edition)
Show Figures

Figure 1

24 pages, 14035 KB  
Article
Analysis of Dynamic Changes in Sedimentation in the Coastal Area of Amir-Abad Port Using High-Resolution Satellite Images
by Ali Sam-Khaniani, Giacomo Viccione, Meisam Qorbani Fouladi and Rahman Hesabi-Fard
J. Imaging 2025, 11(3), 86; https://doi.org/10.3390/jimaging11030086 - 18 Mar 2025
Viewed by 721
Abstract
Sediment transport and shoreline changes causing shoreline morphodynamic evolution are key indicators of a coastal structure’s operational continuity. To reduce the computational costs associated with sediment transport modelling tools, a novel procedure based on the combination of a support vector machine for image [...] Read more.
Sediment transport and shoreline changes causing shoreline morphodynamic evolution are key indicators of a coastal structure’s operational continuity. To reduce the computational costs associated with sediment transport modelling tools, a novel procedure based on the combination of a support vector machine for image classification and a trained neural network to extrapolate the shore evolution is presented here. The current study focuses on the coastal area over the Amir-Abad port, using high-resolution satellite images. The real conditions of the study domain between 2004 and 2023 are analysed, with the aim of investigating changes in the shore area, shoreline position, and sediment appearance in the harbour basin. The measurements show that sediment accumulation increases by approximately 49,000 m2/y. A portion of the longshore sediment load is also trapped and deposited in the harbour basin, disrupting the normal operation of the port. Afterwards, satellite images were used to quantitatively analyse shoreline changes. A neural network is trained to predict the remaining time until the reservoir is filled (less than a decade), which is behind the west arm of the rubble-mound breakwaters. Harbour utility services will no longer be offered if actions are not taken to prevent sediment accumulation. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Graphical abstract

16 pages, 1504 KB  
Article
Population Genetic Structure of Convolvulus persicus L. in the Western Black Sea Region (Romania and Bulgaria) and Its Restricted Distribution
by Elena Monica Mitoi, Carmen Maximilian, Irina Holobiuc, Daniela Mogîldea, Florența-Elena Helepciuc and Claudia Biță-Nicolae
Ecologies 2025, 6(1), 18; https://doi.org/10.3390/ecologies6010018 - 27 Feb 2025
Viewed by 1086
Abstract
Convolvulus persicus L. is an endangered narrow-range taxon, characteristic of the habitats along the coastal regions of the Caspian and the Black Seas. The aims of our research were to update the actual distribution area and the genetic evaluation of three representative populations [...] Read more.
Convolvulus persicus L. is an endangered narrow-range taxon, characteristic of the habitats along the coastal regions of the Caspian and the Black Seas. The aims of our research were to update the actual distribution area and the genetic evaluation of three representative populations from the western coastline of the Black Sea located in Sulina, Agigea, and Durankulak. ISSR amplifications were used to assess the genetic intrapopulation diversity and the genetic differentiation among populations. The average genetic polymorphism was 57.8 ± 16.03%. The intrapopulation genetic diversity parameters indicated that the Agigea population exhibits a higher genetic diversity, with this small population being part of the Agigea Marine Dunes Reserve. Although the interpopulation genetic distance was reduced (0.176–0.223) and the distribution of the total variation (AMOVA) was 57% within the population and 43% among the populations, the interpopulation genetic differentiation (PhiPT) was high (0.428, p < 0.001), probably due to the large geographical distances between the remaining populations. The populations’ genetic structures showed a lower genetic distance between the Agigea and Sulina samples. The clonability test supported the vegetative multiplication on the Durankulak and Sulina beaches. Our results showed that the genetic diversity and the distance among the populations in C. persicus were influenced by habitat conditions, destruction, and fragmentation, but also by conservation measures. Full article
(This article belongs to the Special Issue Feature Papers of Ecologies 2024)
Show Figures

Graphical abstract

47 pages, 29904 KB  
Article
Delineation and Morphometric Characterization of Small- and Medium-Sized Caspian Sea Basin River Catchments Using Remote Sensing and GISs
by Vladimir Tabunshchik, Petimat Dzhambetova, Roman Gorbunov, Tatiana Gorbunova, Aleksandra Nikiforova, Polina Drygval, Ibragim Kerimov and Mariia Kiseleva
Water 2025, 17(5), 679; https://doi.org/10.3390/w17050679 - 26 Feb 2025
Cited by 2 | Viewed by 1677
Abstract
This investigation endeavors to demarcate the boundaries of small- and medium-sized river catchments within the Caspian Sea drainage basin, with a specific focus on the Northeastern Caucasus, Azerbaijan, and Iran regions. A multi-faceted approach was employed, incorporating various remote sensing methods to select [...] Read more.
This investigation endeavors to demarcate the boundaries of small- and medium-sized river catchments within the Caspian Sea drainage basin, with a specific focus on the Northeastern Caucasus, Azerbaijan, and Iran regions. A multi-faceted approach was employed, incorporating various remote sensing methods to select key areas, including the catchments of the Sunzha, Sulak, Ulluchay, Karachay, Atachay, Haraz, and Gorgan rivers. Subsequently, geoinformation systems (GISs) and topographic maps were utilized to determine the morphometric characteristics of these catchments, accompanied by an assessment of the accuracy of remote sensing data. The aim of this study is to evaluate the accuracy and suitability of digital elevation models (DEMs) with a spatial resolution of 30 m per pixel (including ASTER DEM, ALOS DEM, NASADEM, Copernicus 30 m DEM, and SRTM 30 m DEM) and 90 m per pixel (Copernicus 90 m DEM and SRTM 90 m DEM) for delineating small- and medium-sized Caspian Sea basin river catchments. For the DEMs that successfully and accurately delineated watershed boundaries, the morphometric characteristics of the river basins were calculated. This research has yielded novel findings regarding the morphometric characteristics (area, perimeter, ruggedness of the catchment line (roundness coefficient), maximum height, minimum height, average height of the river basin, maximum slope of the surface, average slope of the surface, length of the main watercourse, basin shape parameter (catchment elongation coefficient), shape coefficient, length of the river basin, average river basin slope, and average width of the basin) of individual mountainous small- and medium-sized rivers in the Northeastern Caucasus, Azerbaijan, and Iran, with the catchments of the aforementioned rivers serving as exemplars. The practical significance of these results lies in the fact that such detailed morphometric characteristics of catchments have been obtained for the first time, and their boundaries have been clarified (burned out according to various DEMs), which can serve as a basis for decision-making processes and contribute to the development of operational environmental monitoring of the state of rivers and their catchments. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GISs in River Basin Ecosystems)
Show Figures

Figure 1

16 pages, 6823 KB  
Article
Analyzing Wave Dragon Under Different Wave Heights Using Flow-3D: A Computational Fluid Dynamics Approach
by Mehrdad Moradi and Adrian Ilinca
Water 2025, 17(5), 613; https://doi.org/10.3390/w17050613 - 20 Feb 2025
Viewed by 976
Abstract
Wave energy is an increasingly attractive renewable energy source due to its potential and predictability. Various Wave Energy Converters (WECs) have been developed, including attenuators, overtopping devices, and point absorbers. The Wave Dragon, an overtopping device, is a floating structure anchored to the [...] Read more.
Wave energy is an increasingly attractive renewable energy source due to its potential and predictability. Various Wave Energy Converters (WECs) have been developed, including attenuators, overtopping devices, and point absorbers. The Wave Dragon, an overtopping device, is a floating structure anchored to the seabed with a mooring system. It uses two reflectors to guide incoming waves into a central reservoir, where the captured water flows through turbines to generate electricity. This study enhances the realism of Wave Dragon simulations by modeling it as a moving structure with moorings, addressing key gaps in prior research. Real-time wave data from the Caspian Sea, collected over a year, were used to develop a 3D model and analyze the device’s performance under varying wave conditions. Four significant wave heights (Hs) of 1.5, 2.5, 3.5, and 4.5 m were tested. The results demonstrate that higher wave heights increase water flow through the turbines, leading to higher energy output, with monthly energy generation recorded as 16.03, 25.95, 31.45, and 56.5 MWh for the respective wave heights. The analysis also revealed that higher wave heights significantly increase pressure forces on the Wave Dragon, from 2.97 × 105 N at 1.5 m to 1.95 × 106 N at 4.5 m, representing a 6.5-fold increase. These findings underscore the potential of Wave Dragons to enhance renewable energy production while ensuring structural robustness in varying wave conditions. Full article
(This article belongs to the Special Issue Ship and Ocean Engineering)
Show Figures

Figure 1

15 pages, 1509 KB  
Article
The First Detection of Parasite Ellobiopsis sp. on Calanoids (Crustacea: Copepoda) Inhabiting the Caspian Sea (Central Asia: West Kazakhstan)
by Moldir Aubakirova, Saule Zh. Assylbekova, Kuanysh B. Isbekov, Arkady Kim, Ainur A. Zhaksylykova and Zamira Bolatbekova
Diversity 2025, 17(2), 91; https://doi.org/10.3390/d17020091 - 27 Jan 2025
Viewed by 860
Abstract
The data on hosts of Ellobiopsis in Central Asia waterbodies are nearly non-existent. All research in this direction was conducted in other regions (Europe and Brazil). Parasitological studies were carried out in different seasons in the North and Middle Caspian Sea. Twenty-one taxa [...] Read more.
The data on hosts of Ellobiopsis in Central Asia waterbodies are nearly non-existent. All research in this direction was conducted in other regions (Europe and Brazil). Parasitological studies were carried out in different seasons in the North and Middle Caspian Sea. Twenty-one taxa were registered in zooplankton, and only dominants of community calanoids Acartia (Acanthacartia) tonsa and Calanipeda aquaedulcis were infected with Ellobiopsis sp. Calanoida C. aquaedulcis was reported for the first time as a host for Ellobiopsis. The number of parasites per host was equal to one. The body length of parasites varied from 0.10 to 0.80 mm. The highest infection degree was recorded in C. aquaedulcis (5.71%), and it varied from 2.61% to 3.35% in Acartia. The individuals in the juvenile developmental stages were infected in Calanipeda, while in Acartia, individuals in all developmental stages were vulnerable to infection. The infected calanids had reduced body lengths. The findings suggest the possible influence of Ellobiopsis sp. on quantitative variables of hosts in the Middle Caspian, especially on biomass, by reducing the body sizes of hosts. However, no effect on the abundance and biomass of the host and the structure of the zooplankton of the North Caspian Sea has been detected. Full article
Show Figures

Figure 1

17 pages, 1529 KB  
Article
Dubious Promises of Hydrogen Energy in a Climate-Constrained World
by Aviel Verbruggen, Gulzhan Yermekova and Kanat Baigarin
Energies 2025, 18(3), 491; https://doi.org/10.3390/en18030491 - 22 Jan 2025
Cited by 1 | Viewed by 1001
Abstract
Vocal proponents claim that hydrogen will play a crucial role in the low-carbon energy future, a claim critics dismiss. Our approach to clarifying these disputes involves reviewing literature and policy documents, revisiting energy and hydrogen physics, and framing the hydrogen question within the [...] Read more.
Vocal proponents claim that hydrogen will play a crucial role in the low-carbon energy future, a claim critics dismiss. Our approach to clarifying these disputes involves reviewing literature and policy documents, revisiting energy and hydrogen physics, and framing the hydrogen question within the context of failing climate and energy politics and actions aimed at reducing greenhouse gas emissions. Clarity about hydrogen’s role begins with knowing its peculiar properties, followed by numerical data on energy conversions and related losses, which reveal intractable hurdles in deploying a hydrogen energy economy. Thus, hydrogen derivatives like ammonia and synthetic hydrocarbon fuels emerge, but they sink the green hydrogen ambitions advertised to the public. Their dubious environmental and financial performance is hidden by substantial subsidies. The announced EU megaproject for producing 11 Mtons of green ammonia at the Caspian Sea in Kazakhstan contrasts with the 20 ktons realized project in Norway. While the Kazakhstani project promises grand results, its practical and financial feasibility is questionable. The Norwegian project shows the reality of green ammonia production. The article concludes that hydrogen’s economic and environmental feasibility remains challenging. Full article
(This article belongs to the Special Issue Novel Research on Renewable Power and Hydrogen Generation)
Show Figures

Figure 1

21 pages, 2975 KB  
Article
Diversity and Distribution of Hydrocarbon-Degrading Genes in the Cold Seeps from the Mediterranean and Caspian Seas
by Yogita Warkhade, Laura G. Schaerer, Isaac Bigcraft, Terry C. Hazen and Stephen M. Techtmann
Microorganisms 2025, 13(2), 222; https://doi.org/10.3390/microorganisms13020222 - 21 Jan 2025
Cited by 1 | Viewed by 1250
Abstract
Marine cold seeps are unique ecological niches characterized by the emergence of hydrocarbons, including methane, which fosters diverse microbial communities. This study investigates the diversity and distribution of hydrocarbon-degrading genes and organisms in sediments from the Caspian and Mediterranean Seas, utilizing 16S rRNA [...] Read more.
Marine cold seeps are unique ecological niches characterized by the emergence of hydrocarbons, including methane, which fosters diverse microbial communities. This study investigates the diversity and distribution of hydrocarbon-degrading genes and organisms in sediments from the Caspian and Mediterranean Seas, utilizing 16S rRNA and metagenomic sequencing to elucidate microbial community structure and functional potential. Our findings reveal distinct differences in hydrocarbon degrading gene profiles between the two seas, with pathways for aerobic and anaerobic hydrocarbon degradation co-existing in sediments from both basins. Aerobic pathways predominate in the surface sediments of the Mediterranean Sea, while anaerobic pathways are favored in the surface sediments of the anoxic Caspian Sea. Additionally, sediment depths significantly influence microbial diversity, with variations in gene abundance and community composition observed at different depths. Aerobic hydrocarbon-degrading genes decrease in diversity with depth in the Mediterranean Sea, whereas the diversity of aerobic hydrocarbon-degrading genes increases with depth in the Caspian Sea. These results enhance our understanding of microbial ecology in cold seep environments and have implications for bioremediation practices targeting hydrocarbon pollutants in marine ecosystems. Full article
(This article belongs to the Special Issue Microbial Metabolism and Application in Biodegradation)
Show Figures

Figure 1

21 pages, 6182 KB  
Article
Spatiotemporal Dynamics of Drought and the Ecohydrological Response in Central Asia
by Keting Feng, Yanping Cao, Erji Du, Zengguang Zhou and Yaonan Zhang
Remote Sens. 2025, 17(1), 166; https://doi.org/10.3390/rs17010166 - 6 Jan 2025
Cited by 4 | Viewed by 1672
Abstract
Due to the influences of climate change and human activities, the resources and environments of the “One Belt and One Road” initiative are facing severe challenges. Using drought indicators, this study aimed to analyze the spatiotemporal characteristics of the drought environment and the [...] Read more.
Due to the influences of climate change and human activities, the resources and environments of the “One Belt and One Road” initiative are facing severe challenges. Using drought indicators, this study aimed to analyze the spatiotemporal characteristics of the drought environment and the response of vegetation cover in the area to drought conditions. The Gravity Recovery and Climate Experiment (GRACE) drought severity index (GRACE-DSI), GRACE water storage deficit index (GRACE-WSDI) and standardized precipitation index (SPI) were calculated to measure hydrological drought. Additionally, based on GRACE and Global Land Data Assimilation System (GLDAS) data, groundwater data in Central Asia was retrieved to calculate the groundwater drought index using the GRACE Standardized Groundwater Level Index (GRACE-SGI). The findings indicate that, from 2000, Central Asia’s annual precipitation decreased at a rate of 1.80 mm/year (p < 0.1), and its annual temperature increased slightly, at a rate of 0.008 °C/year (p = 0.62). Water storage decreased significantly at a rate of −3.53 mm/year (p < 0.001) and showed an increase-decrease-increase-decrease pattern. During the study period, the aridity in Central Asia deteriorated, especially on the eastern coast of the Caspian Sea and the Aral Sea basin. After 2020, most of Central Asia experienced droughts at both the hydrological and groundwater droughts levels and of varying lengths and severity. During the growing season, there was a substantial positive association between the Normalized Difference Vegetation Index (NDVI) and drought indicators such as GRACE-DSI and GRACE-WSDI. Nonetheless, the NDVI of cultivated land and grassland distribution areas in Central Asia displayed a strong negative correlation with GRACE-SGI. This study concludes that the arid environment in Central Asia affected the growth of vegetation. The ecological system in Central Asia may be put under additional stress if drought conditions continue to worsen. This paper explores the drought characteristics in Central Asia, especially those of groundwater drought, and analyzes the response of vegetation, which is very important for the ecological and environmental protection of the region. Full article
Show Figures

Figure 1

Back to TopTop