Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = DC power recovery speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5283 KB  
Article
Oilfield Microgrid-Oriented Supercapacitor-Battery Hybrid Energy Storage System with Series-Parallel Compensation Topology
by Lina Wang
Processes 2025, 13(6), 1689; https://doi.org/10.3390/pr13061689 - 28 May 2025
Viewed by 860
Abstract
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be [...] Read more.
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be properly improved. The model predictive control with a current inner loop is employed for current tracking, which enhances the response speed and control performance. Applying the proposed hybrid energy storage system in an oilfield DC microgrid, the fault-ride-through ability of renewable energy generators and the reliable power supply ability for oil pumping unit loads can be improved, the dynamic response characteristics of the system can be enhanced, and the service life of energy storage devices can be extended. This paper elaborates on the series-parallel compensation topology, operational principles, and control methodology of the supercapacitor-battery hybrid energy storage. A MATLAB/Simulink model of the oilfield DC microgrid employing the proposed scheme was established for verification. The results demonstrate that the proposed scheme can effectively isolate voltage sags/swells caused by upstream grid faults, maintaining DC bus voltage fluctuations within ±5%. It achieves peak shaving of oil pumping unit load demand, recovery of reverse power generation, stabilization of photovoltaic output, and reduction of power backflow. This study presents an advanced technical solution for enhancing power supply quality in high-penetration renewable energy microgrids with numerous sensitive and critical loads. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 3391 KB  
Article
Characteristics Evaluation and Coordinated Control Strategy of Power-Electronics-Based MMC-HVDC Systems Connected with Wind Farms
by Lin Xu, Chang Liu, Jingyi Zhang, Zhen Tian, Pan Feng and Meng Huang
Appl. Sci. 2025, 15(5), 2582; https://doi.org/10.3390/app15052582 - 27 Feb 2025
Cited by 2 | Viewed by 776
Abstract
Modular multilevel converter–high-voltage direct current (MMC-HVDC) systems are a key technology for integrating large-scale offshore wind farms due to their flexibility, controllability, and decoupled active and reactive power characteristics. However, offshore wind farms rely on power electronic converters, resulting in low inertia, which [...] Read more.
Modular multilevel converter–high-voltage direct current (MMC-HVDC) systems are a key technology for integrating large-scale offshore wind farms due to their flexibility, controllability, and decoupled active and reactive power characteristics. However, offshore wind farms rely on power electronic converters, resulting in low inertia, which can worsen frequency fluctuations and affect system stability during major disturbances. Additionally, the decoupled power control of MMC-HVDC systems limits wind farms’ inertia contribution to the AC grid, exacerbating inertia deficiency. To address this, a coordinated inertia support strategy is proposed, utilizing a DC voltage–frequency mapping method that enables wind farms to perceive frequency variations without communication and rapidly provide inertia response. This strategy coordinates wind farms and MMC-HVDC systems to enhance frequency support. Simulations demonstrate that the proposed strategy overcomes MMC-HVDC’s decoupling effect, accelerates frequency recovery, and improves the inertia response speed, achieving faster power support and higher peak power output, thereby enhancing frequency stability. Furthermore, PSCAD/EMTDC simulations were conducted to analyze the transient characteristics of MMC-HVDC under AC-side faults, verifying that braking resistors (BRs) effectively suppress DC overvoltage, reducing wind farm power curtailment and improving system security. This study provides a new approach for frequency stability control in MMC-HVDC-based offshore wind integration and serves as a reference for further optimization of inertia support and fault protection strategies. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

35 pages, 5075 KB  
Article
Variable-Speed Hydropower Control and Ancillary Services: A Remedy for Enhancing Grid Stability and Flexibility
by Cagatay Cebeci, Max Parker, Luis Recalde-Camacho, David Campos-Gaona and Olimpo Anaya-Lara
Energies 2025, 18(3), 642; https://doi.org/10.3390/en18030642 - 30 Jan 2025
Cited by 4 | Viewed by 1131
Abstract
Variable-Speed Hydropower Plants (VSHP) are becoming more promising for stabilising power grids with the increasing integration of renewable energy sources. This research focuses on improving fault ride-through capabilities and delivering efficient ancillary services for VSHPs to support the grid by developing a comprehensive [...] Read more.
Variable-Speed Hydropower Plants (VSHP) are becoming more promising for stabilising power grids with the increasing integration of renewable energy sources. This research focuses on improving fault ride-through capabilities and delivering efficient ancillary services for VSHPs to support the grid by developing a comprehensive control strategy. The control system proposed integrates a machine-side controller, a Frequency Support Controller (FSC), a Virtual Synchronous Machine (VSM), a Vector Current Controller (VCC) for the grid-side converter, a turbine governor for regulating turbine speed, and a DC-link controller. PID with an anti-windup scheme and a Model Predictive Controller (MPC) were employed for the turbine governor. The MPC turbine governor results demonstrate the potential of advanced control methods for enhanced performance of the VSHP. A benchmarking between the MPC and the PID governor was made. The benchmarking results have reported that the MPC can achieve reference tracking improvements up to 99.42%. Tests on a diverse set of grid scenarios were conducted, and the graphical results showed significant improvements in mitigating the frequency drops through the effective governor response. The synthetic inertia provision is swift, completing within seconds of a frequency drop. Compared to the fixed-speed approach, the VSHP improves the grid’s overall stability by minimising frequency dipping and achieving steady-state recovery remarkably faster. The fixed-speed approach only begins to recover minutes after the VSHP reaches the settling time. By effectively providing critical ancillary services such as frequency support, synthetic inertia, and smooth fault ride-through capability, the VSHP can become a transformative solution for future power grids, which are estimated to be more reliant on renewable energy sources. Full article
(This article belongs to the Special Issue Low Carbon Energy Generation and Utilization Technologies)
Show Figures

Figure 1

20 pages, 3856 KB  
Article
Research on Self-Recovery Ignition Protection Circuit for High-Voltage Power Supply System Based on Improved Gray Wolf Algorithm
by Jingyi Zhu, Wanlu Zhu, Haifeng Wei and Yi Zhang
Energies 2024, 17(24), 6332; https://doi.org/10.3390/en17246332 - 16 Dec 2024
Viewed by 893
Abstract
In order to solve the problems of traditional high-voltage power supply ignition protection circuits, such as non-essential start–stop power supply, a slow response speed, the system needing to be restarted manually, and so on, a high-voltage power supply system self-recovery ignition protection circuit [...] Read more.
In order to solve the problems of traditional high-voltage power supply ignition protection circuits, such as non-essential start–stop power supply, a slow response speed, the system needing to be restarted manually, and so on, a high-voltage power supply system self-recovery ignition protection circuit was designed using an IGWO (improved grey wolf optimization) and PID control strategy designed to speed up the response speed, and improve the reliability and stability of the system. In high-voltage power supply operation, the firing discharge phenomenon occurs. Current transformers fire signal into a current signal through the firing voltage value and Zener diode voltage comparison to set the safety threshold; when the threshold is exceeded, the fire protection mechanism is activated, reducing the power supply voltage output to protect the high-voltage power supply system. When the ignition signal disappears, based on the IGWO-PID control of the ignition self-recovery circuit according to the feedback voltage, the DC supply voltage of the high-voltage power supply is adjusted, inhibiting the ignition discharge and, according to the ignition signal, “segmented” to restore the output of the initial voltage. MATLAB/Simulink was used to establish a system simulation model and physical platform test. The results show that the protection effect of the designed scheme is an improvement, in line with the needs of practical work. Full article
(This article belongs to the Special Issue Advances in Stability Analysis and Control of Power Systems)
Show Figures

Figure 1

20 pages, 7678 KB  
Article
Protection and Fault Isolation Scheme for DC Distribution Network Based on Active Current-Limiting Control
by Langheng Cao, Jiawen Lv, Jing Chen, Feng Zheng and Ning Liang
Symmetry 2024, 16(10), 1275; https://doi.org/10.3390/sym16101275 - 27 Sep 2024
Cited by 3 | Viewed by 1486
Abstract
Aiming at the problems of high peak value fault current, fast rising speed, and being unable to ensure the reliability of the power supply in the non-fault zone in a multi-terminal DC system, a new cascade flexible current limiter and mechanical DC circuit [...] Read more.
Aiming at the problems of high peak value fault current, fast rising speed, and being unable to ensure the reliability of the power supply in the non-fault zone in a multi-terminal DC system, a new cascade flexible current limiter and mechanical DC circuit breaker for medium- and high-voltage distribution networks are proposed. Firstly, the flexible current limiter is triggered by differential under-voltage protection to achieve the effect of interpole voltage clamping, suppressing the fault current and improving the dynamic recovery characteristics of the DC system after fault clearing. Secondly, according to the breaking speed of the DC circuit breaker, the action time of the current limiter can be set flexibly. The directional pilot protection signal of the circuit breaker is used to ensure the continuous action of the current limiter at the converter station side in the fault zone, until the circuit breaker acts to isolate the fault. The protection strategy can also avoid the blocking of the converter station and reduce the requirements for the breaking speed and breaking capacity of the circuit breaker. Finally, a four-terminal medium voltage distribution network model is built in MATLAB/SIMULINK, and the effect of the current limiter and the feasibility of the proposed protection strategy are verified by simulation. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 4540 KB  
Article
Impact Mechanisms of Commutation Failure Caused by a Sending-End AC Fault and Its Recovery Speed on Transient Stability
by Yifeng Lin, Jiawei Hu, Tong Wang and Zengping Wang
Electronics 2023, 12(16), 3439; https://doi.org/10.3390/electronics12163439 - 14 Aug 2023
Cited by 1 | Viewed by 1344
Abstract
A sending-end AC fault may lead to commutation failure (CF) in a line-commutated converter high-voltage direct current (LCC-HVDC) system. In this paper, a theoretical analysis of the impact mechanisms of a CF and its recovery speed on the transient stability of a sending-end [...] Read more.
A sending-end AC fault may lead to commutation failure (CF) in a line-commutated converter high-voltage direct current (LCC-HVDC) system. In this paper, a theoretical analysis of the impact mechanisms of a CF and its recovery speed on the transient stability of a sending-end power system (TSSPS) is performed. Firstly, the models of the sending-end power system and DC power of CF are established; the ramp function is utilized to characterize the DC power recovery process. Secondly, the swing direction of the relative rotor angle caused by a sending-end AC fault is discussed, and the DC power flow method is employed to theoretically analyze the impacts of CF and its recovery speed on TSSPS. Next, the mathematic relations between parameters of the voltage-dependent current order limiter (VDCOL) and DC power recovery speed are further derived. It is concluded that the impacts of CF and its recovery speed on transient stability are related to the swing direction caused by a sending-end AC fault, the inertia of generators, and the location of the rectifier station. Finally, the theoretical analysis is validated by Kundur’s two-area system and IEEE 68-bus-based AC/DC asynchronous interconnection test power systems, respectively. Full article
(This article belongs to the Topic Power System Dynamics and Stability)
Show Figures

Figure 1

15 pages, 4740 KB  
Article
Analysis and Design of the High Current Rising Rate Hybrid DC Current Limiting Circuit Breaker
by Zhiyong Lv, Xiangjun Wang, Jinwu Zhuang, Luhui Liu, Zhifang Yuan, Siguang Li and Jin Wu
Electronics 2023, 12(12), 2657; https://doi.org/10.3390/electronics12122657 - 13 Jun 2023
Cited by 7 | Viewed by 1886
Abstract
To solve the problem of the high rising rate and large peak value of the expected current of the short-circuit current in marine DC power system faults, a hybrid DC current limiting circuit breaker scheme based on a high-speed electromagnetic repulsion mechanism is [...] Read more.
To solve the problem of the high rising rate and large peak value of the expected current of the short-circuit current in marine DC power system faults, a hybrid DC current limiting circuit breaker scheme based on a high-speed electromagnetic repulsion mechanism is proposed. A parameter selection model is constructed by comprehensively considering the short-time withstand of the thyristor, the volume of the commutation circuit, and capacitor energy, and the optimal value of the commutation circuit parameters at a certain voltage level is obtained. The finite element mathematical model of the high-speed electromagnetic repulsion mechanism is established by coupling the electromagnetic force field, which enables the deformation process of the mechanism under the condition of high acceleration to be considered. The von Mises yield criterion is adopted as the mechanical boundary condition in the design of a high-speed electromagnetic repulsion mechanism, which solves the problem of the long inherent time of opening. The experiment platform is built, and the experiment under the fault condition with a current rising rate of 20 A/μs is completed. The arcing time, commutation time, zero-voltage recovery time, and contact movement characteristics are obtained, which meet the design requirements, verify the effectiveness of the analysis, and lay a solid foundation for further research and development of the current limiting circuit breakers for medium voltage DC systems. Full article
(This article belongs to the Topic Power System Protection)
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

21 pages, 8102 KB  
Article
Improvement of Autonomy, Efficiency, and Stress of Fuel Cell Hybrid Electric Vehicle System Using Robust Controller
by Aissa Benhammou, Mohammed Amine Hartani, Hamza Tedjini, Hegazy Rezk and Mujahed Al-Dhaifallah
Sustainability 2023, 15(7), 5657; https://doi.org/10.3390/su15075657 - 23 Mar 2023
Cited by 11 | Viewed by 2642
Abstract
Among issues facing the transportation sector today is the limited autonomy of electric vehicles, which are highly reliant upon energy storage systems. Considering this issue as the current research gap, researchers seek to prolong vehicle dependability through renewable-free and sustainable energy that tackles [...] Read more.
Among issues facing the transportation sector today is the limited autonomy of electric vehicles, which are highly reliant upon energy storage systems. Considering this issue as the current research gap, researchers seek to prolong vehicle dependability through renewable-free and sustainable energy that tackles negative environmental impacts. This research exploits the electric vehicle’s kinetic energy to improve its performance and reliability. It uses fuel-cell resources and supercapacitors hybridized with lithium-ion batteries, in addition to DC generators connected to front wheels that convert their rotations into energy contributing to the vehicle’s overall power balance. A state machine-based energy management strategy computes fuel-cell setpoint power, while a dual-loop structure uses a super-twisting controller for DC bus voltage regulation and recovery, in addition to tracking banks’ setpoint currents. A speed controller-based artificial intelligence is proposed to reduce power losses and enable accurate tracking of running trajectory to improve vehicle mechanisms. The simulation results using Matlab Simulink software proved the proposed vehicle’s feasibility by adopting the free kinetic energy of additional DC generators that provided 28% of its total power requirements, resulting in superior supply efficiency reaching 98%. Thus, the stress on FC and battery was minimized by 21% and 10%, respectively, in addition to reducing fuel consumption by 39%, so the vehicle autonomy was extended, and its reliability was enhanced and supported, as targeted. Full article
(This article belongs to the Special Issue Sustainable Electric Power System and Renewable Energy)
Show Figures

Figure 1

11 pages, 3751 KB  
Article
Improved Frequency Control Strategy for Offshore Wind Farm Integration via VSC-HVDC
by Rui Zeng and Yizhen Wang
Energies 2022, 15(17), 6363; https://doi.org/10.3390/en15176363 - 31 Aug 2022
Cited by 5 | Viewed by 2047
Abstract
Voltage source converter based high voltage DC system (VSC-HVDC) has become a very promising solution to integrate offshore wind farm. However, the equivalent inertia of the modern power system with large renewable energy integration becomes small, which will arouse some frequency stability problems. [...] Read more.
Voltage source converter based high voltage DC system (VSC-HVDC) has become a very promising solution to integrate offshore wind farm. However, the equivalent inertia of the modern power system with large renewable energy integration becomes small, which will arouse some frequency stability problems. To tackle this problem, this paper proposes an improved frequency regulation strategy for VSC-HVDC integrated offshore wind farm. Firstly, in the frequency decrease stage, the rotor kinetic energy of wind turbines (WTs) is used to suppress the decrease of the frequency, and the control parameters are determined to make full use of the mechanical power and rotor kinetic energy of WTs, the frequency nadir is improved. Secondly, in the rotor speed recovery stage, the DC capacitors of VSC-HVDC are used to release power to compensate the deficiency value of wind farm output power and avoid the secondary frequency drop (SFD) problem. Lastly, the simulation is conducted in PSCAD/EMTDC to validate the effectiveness of the proposed coordinated frequency control strategy. Full article
(This article belongs to the Special Issue Advances in DC Technology for Modern Power Systems)
Show Figures

Figure 1

21 pages, 5478 KB  
Article
Mechanism Analysis of a Subsequent Commutation Failure and a DC Power Recovery Speed Control Strategy
by Bowen Zheng, Jiawei Hu, Tong Wang and Zengping Wang
Electronics 2022, 11(7), 998; https://doi.org/10.3390/electronics11070998 - 23 Mar 2022
Cited by 2 | Viewed by 1963
Abstract
A subsequent commutation failure (SCF) of the Line-Commutated Converter–High-Voltage Direct Current (LCC-HVDC) may occur during the recovery after the clearance of an AC fault, seriously threatening the safe and stable operation of the LCC-HVDC and the entire post-fault AC/DC hybrid power system. In [...] Read more.
A subsequent commutation failure (SCF) of the Line-Commutated Converter–High-Voltage Direct Current (LCC-HVDC) may occur during the recovery after the clearance of an AC fault, seriously threatening the safe and stable operation of the LCC-HVDC and the entire post-fault AC/DC hybrid power system. In this study, the mechanism of an SCF as affected by the transient stability was analyzed, and a DC power recovery speed control strategy is proposed as an additional form of control to prevent the occurrence of SCFs. First, the sending-end and receiving-end power systems were modeled as synchronous generators instead of ideal voltage sources, and the mechanism of an SCF as affected by the transient stability was analyzed and verified. Second, the ramp function was adopted to describe the recovery characteristic of DC power, and a model of its recovery was established. Then, the recovery speed control strategy is presented based on the mechanism analysis of SCFs, which can not only be used to avoid the occurrence of SCFs but also increase the transient stability margin of the sending-end power system. Finally, the effectiveness and robustness of the proposed control strategy were validated by using a hybrid electromechanical–electromagnetic model and the full electromagnetic model of the IEEE 39-bus asynchronous interconnection test power system. With the implementation of the proposed control strategy, the safe and stable operation of the LCC-HVDC and AC/DC hybrid power system can be guaranteed. The adaptive DC power recovery speed control strategy will be further investigated in future research work. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

18 pages, 4021 KB  
Article
Designing a Wind Energy Harvester for Connected Vehicles in Green Cities
by Zuhaib Ashfaq Khan, Hafiz Husnain Raza Sherazi, Mubashir Ali, Muhammad Ali Imran, Ikram Ur Rehman and Prasun Chakrabarti
Energies 2021, 14(17), 5408; https://doi.org/10.3390/en14175408 - 31 Aug 2021
Cited by 24 | Viewed by 5818
Abstract
Electric vehicles (EVs) have recently gained momentum as an integral part of the Internet of Vehicles (IoV) when authorities started expanding their low emission zones (LEZs) in an effort to build green cities with low carbon footprints. Energy is one of the key [...] Read more.
Electric vehicles (EVs) have recently gained momentum as an integral part of the Internet of Vehicles (IoV) when authorities started expanding their low emission zones (LEZs) in an effort to build green cities with low carbon footprints. Energy is one of the key requirements of EVs, not only to support the smooth and sustainable operation of EVs, but also to ensure connectivity between the vehicle and the infrastructure in the critical times such as disaster recovery operation. In this context, renewable energy sources (such as wind energy) have an important role to play in the automobile sector towards designing energy-harvesting electric vehicles (EH-EV) to mitigate energy reliance on the national grid. In this article, a novel approach is presented to harness energy from a small-scale wind turbine due to vehicle mobility to support the communication primitives in electric vehicles which enable plenty of IoV use cases. The harvested power is then processed through a regulation circuitry to consequently achieve the desired power supply for the end load (i.e., battery or super capacitor). The suitable orientation for optimum conversion efficiency is proposed through ANSYS-based aerodynamics analysis. The voltage-induced by the DC generator is 35 V under the no-load condition while it is 25 V at a rated current of 6.9 A at full-load, yielding a supply of 100 W (on constant voltage) at a speed of 90 mph for nominal battery charging. Full article
(This article belongs to the Special Issue Advanced Energy Harvesting Technologies)
Show Figures

Figure 1

14 pages, 2982 KB  
Concept Paper
Superconducting AC Homopolar Machines for High-Speed Applications
by Swarn Kalsi, Kent Hamilton, Robert George Buckley and Rodney Alan Badcock
Energies 2019, 12(1), 86; https://doi.org/10.3390/en12010086 - 28 Dec 2018
Cited by 47 | Viewed by 8186
Abstract
This paper presents a novel high-speed alternating current (AC) homopolar motor/generator design using stationary ReBCO excitation windings. Compact, lightweight, high-efficiency motors and generators are sought for a multitude of applications. AC homopolar synchronous machines are an ideal choice for such applications as these [...] Read more.
This paper presents a novel high-speed alternating current (AC) homopolar motor/generator design using stationary ReBCO excitation windings. Compact, lightweight, high-efficiency motors and generators are sought for a multitude of applications. AC homopolar synchronous machines are an ideal choice for such applications as these machines enable very high rotational frequencies. These machines include both AC armature winding and direct current (DC) excitation winding within the stationary part of the machine. The stationary excitation winding magnetizes a solid steel rotor, enabling operating speeds limited only by the mechanical stress limit of the rotor steel. The operating speeds are many multiples of conventional power 50/60 Hz machines. Significant cooling requirements limit machines of this type utilizing copper excitation windings to only a few kilowatts. However, megawatt ratings become possible when superconductor coils are used. This paper describes the design and analysis of an AC homopolar machine in the context of developing a 500 kW flywheel system to be used for energy recovery and storage in commuter rail subway systems. Different approaches are discussed for an AC armature employing conventional copper coils. Challenges of building and cooling both armature and field coils are discussed and preferred approaches are suggested. Calculations of the machine performance are then made. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

22 pages, 1833 KB  
Article
Improvement of Ultrasonic Pulse Generator for Automatic Pipeline Inspection
by Noé Amir Rodríguez-Olivares, José Vicente Cruz-Cruz, Alejandro Gómez-Hernández, Rodrigo Hernández-Alvarado, Luciano Nava-Balanzar, Tomás Salgado-Jiménez and Jorge Alberto Soto-Cajiga
Sensors 2018, 18(9), 2950; https://doi.org/10.3390/s18092950 - 5 Sep 2018
Cited by 30 | Viewed by 9489
Abstract
This paper presents the improvement of an ultrasonic pulse generator for a pipeline inspection gauge (PIG), which uses 64 transducers for inspecting distances up to 100 km with an axial resolution fixed at 3 mm and variable speeds between 0 and 2 m/s. [...] Read more.
This paper presents the improvement of an ultrasonic pulse generator for a pipeline inspection gauge (PIG), which uses 64 transducers for inspecting distances up to 100 km with an axial resolution fixed at 3 mm and variable speeds between 0 and 2 m/s. An ultrasonic pulse generator is composed of a high-voltage (HV) MOSFETs, driver logic and an HV power supply. We used a DC-HV DC converter device as the HV power supply because it reduces the size of the ultrasound system considerably. However, pipeline geometry and inspection effects such as hammer and shock cause a variable pulse repetition frequency (PRF), producing voltage drops, poor quality of the HV pulse generated, failures in the dimensioning of defects and damage to devices by over-voltage. Our improvement is to implement a control scheme to maintain the high quality of the HV regardless of the variable PRF. To achieve this, we characterized three transfer functions of the DC-HV DC converter, varying the connected load to 10%, 45% and 80%. For the characterization, we used the least squares technique, considering an autoregressive exogenous (ARX) model. Later, we compared three control schemes: (1) proportional-integral-derivative (PID) tuned by simultaneous optimization of several responses (SOSR), (2) PID tuned by a neural network (NN) and (3) PI tuned by the analytical design method (ADM). The metrics used to compare the control schemes were the recovery time, the maximum over-voltage and the excess energy when the shock and hammer effects happen to occur. Finally, to verify the improvement of the HV pulser, we compared the ultrasonic pulses generated for various frequencies and amplitudes using the pulse generator with and without the control scheme. Full article
(This article belongs to the Special Issue Sensing in Oil and Gas Applications)
Show Figures

Figure 1

31 pages, 737 KB  
Article
A STATCOM with Supercapacitors for Low-Voltage Ride-Through in Fixed-Speed Wind Turbines
by Andrés Felipe Obando-Montaño, Camilo Carrillo, José Cidrás and Eloy Díaz-Dorado
Energies 2014, 7(9), 5922-5952; https://doi.org/10.3390/en7095922 - 10 Sep 2014
Cited by 21 | Viewed by 13926
Abstract
Fixed-speed wind generator (FSWG) technology has an important presence in countries where wind energy started to be developed more than a decade ago. This type of technology cannot be directly adapted to the grid codes, for example those requirements related to the immunity [...] Read more.
Fixed-speed wind generator (FSWG) technology has an important presence in countries where wind energy started to be developed more than a decade ago. This type of technology cannot be directly adapted to the grid codes, for example those requirements related to the immunity level under voltage dips. That behavior is typically referred as low-voltage ride through (LVRT), and it usually implies certain reactive and active power injection requirements, both during a voltage dip and during the voltage recovery. In this context, a review is presented of the LVRT exigencies present in some of the countries with the most advanced grid codes (Denmark, Germany, Spain and the United Kingdom). In this paper, the capabilities of STATCOM-based devices for fulfilling the LVRT requirements in FSWGs are analyzed. For this purpose, two technologies are considered: a STATCOM with a supercapacitor, which improves its energy storage features; and a STATCOM with a supercapacitor and a DC-DC converter, to achieve higher discharge levels. Full article
(This article belongs to the Special Issue Wind Turbines 2014)
Show Figures

Figure 1

Back to TopTop