Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = DNL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4988 KiB  
Article
Analysis of the SEU Tolerance of an FPGA-Based Time-to-Digital Converter Using Emulation-Based Fault Injection
by Roza Teklehaimanot Siecha, Getachew Alemu, Jeffrey Prinzie and Paul Leroux
Electronics 2025, 14(11), 2176; https://doi.org/10.3390/electronics14112176 - 27 May 2025
Viewed by 133
Abstract
In application domains where severe environmental conditions are unavoidable, including high-energy physics and nuclear power plants, accurate and dependable time-to-digital converters (TDCs) are essential components. Single-event upsets (SEUs) associated with the configuration memory of field-programmable gate array (FPGA)-based implementations are becoming common sources [...] Read more.
In application domains where severe environmental conditions are unavoidable, including high-energy physics and nuclear power plants, accurate and dependable time-to-digital converters (TDCs) are essential components. Single-event upsets (SEUs) associated with the configuration memory of field-programmable gate array (FPGA)-based implementations are becoming common sources of performance degradation even in terrestrial areas. Hence, the need to test and mitigate the effects of SEUs on FPGA-based TDCs is crucial to ensure that the design achieves reliable performance under critical conditions. The TMR SEM IP provides real-time fault injection, and dynamic SEU monitoring and correction in safety critical conditions without intervening with the functionality of the system, unlike traditional fault injection methods. This paper presents a scalable and fast fault emulation framework that tests the effects of SEUs on the configuration memory of a 5.7 ps-resolution TDC implemented on ZedBoard. The experimental results demonstrate that the standard deviation in mean bin width is 2.4964 ps for the golden TDC, but a 0.8% degradation in the deviation is observed when 3 million SEUs are injected, which corresponds to a 0.02 ps increment. Moreover, as the number of SEUs increases, the degradation in the RMS integral non-linearity (INL) of the TDC also increases, which shows 0.04 LSB (6.8%) and 0.05 LSB (8.8%) increments for 1 million and 3 million SEUs injected, respectively. The RMS differential non-linearity (DNL) of the faulty TDC with 3 million SEUs injected shows a 0.035 LSB (0.8%) increase compared to the golden TDC. Full article
Show Figures

Figure 1

22 pages, 2854 KiB  
Perspective
The Hepatic Axis Fructose-Methylglyoxal-AMPK: Starring or Secondary Role in Chronic Metabolic Disease?
by Alejandro Gugliucci
J. Clin. Med. 2025, 14(10), 3559; https://doi.org/10.3390/jcm14103559 - 19 May 2025
Viewed by 224
Abstract
Biochemical alterations linked to metabolic syndrome (MetS), type 2 diabetes (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) may be brought on by the Western diet. Based on research conducted over the past decade, fructose is one of the main culprits. Over 80% [...] Read more.
Biochemical alterations linked to metabolic syndrome (MetS), type 2 diabetes (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) may be brought on by the Western diet. Based on research conducted over the past decade, fructose is one of the main culprits. Over 80% of ingested fructose is metabolized by the liver at first pass, where it stimulates de novo lipogenesis (DNL) to drive hepatic triglyceride (TG) synthesis, which contributes to MASLD, hepatic insulin resistance (IR), and dyslipidemia. Fructose reduction produces quick and significant amelioration in these metabolic disturbances. We hereby propose potential overarching processes that can link these pathways to signaling disruption by the critical metabolic sensor AMP-activated protein kinase (AMPK). We proffer that when large amounts of fructose and glucose enter the liver, triose fluxes may be sufficient to produce transient increases in methylglyoxal (MG), allowing steady-state concentrations between its production and catabolism by glyoxalases to be high enough to modify AMPK-sensitive functional amino acid residues. These reactions would transiently interfere with AMPK activation by both AMP and aldolase. Such a sequence of events would boost the well-documented lipogenic impact of fructose. Given that MG adducts are irreversible, modified AMPK molecules would be less effective in metabolite sensing until they were replaced by synthesis. If proven, this mechanism provides another avenue of possibilities to tackle the problem of fructose in our diet. We additionally discuss potential multimodal treatments and future research avenues for this apparent hepatic AMPK malfunction. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Graphical abstract

16 pages, 2983 KiB  
Article
Study on Differences in Structure and Anti-Inflammatory Activity of Polysaccharides in Five Species of Dendrobium
by Hua Zhu, Hui-Wen Zhang, Jia-Hao Fan, Si-Si Jia, Xin Yi, Zi-Wei Han, Ren-Lei Wang, Hong-Wei Qiu and Guang-Ping Lv
Polymers 2025, 17(9), 1164; https://doi.org/10.3390/polym17091164 - 24 Apr 2025
Viewed by 298
Abstract
Dendrobium is a famous edible and medicinal plants, and polysaccharides are their main bioactive components. Polysaccharides from five species, namely, DO (Dendrobium officinale Kimura et Migo), DH (Dendrobium huoshanense C. Z. Tang et S. J. Cheng), DNL (Dendrobium nobile Lindl.), [...] Read more.
Dendrobium is a famous edible and medicinal plants, and polysaccharides are their main bioactive components. Polysaccharides from five species, namely, DO (Dendrobium officinale Kimura et Migo), DH (Dendrobium huoshanense C. Z. Tang et S. J. Cheng), DNL (Dendrobium nobile Lindl.), DFH (Dendrobium fimbriatum Hook.), and DCL (Dendrobium chrysanthum Lindl.), were compared based on molecular weight (Mw), monosaccharide composition, and glycosidic bond types. The results showed that Dendrobium polysaccharides (DPs) contain relatively simple compositional monosaccharides and mainly consist of mannose (Man) and glucose (Glc), along with small amounts of arabinose (Ara), xylose (Xyl), and galactose (Gal). The Am/Ag (the ratio of Man to Glc) values in DO, DH, and DNL polysaccharides were 3.23, 3.81, and 3.88, while those in DFH and DCL were 0.45 and 0.81. DPs are mainly composed of →4)Manp(1→ and →4)Glcp(1→, but their molar ratios were different. →4)Manp(1→ and →4)Glcp(1→ ratios were 2.85, 2.92, 1.50, 1.45, and 1.05 in DO, DH, DNL, DFH, and DCL, respectively. Hierarchical cluster analysis (HCA) showed that there were significant differences in structural information, especially in glycosidic bond types and proportions. DH, DO, and DCL were clustered into different groups based on glycosidic bond types and proportions, respectively. Moreover, the five species of Dendrobium could significantly inhibit NO production and apoptosis induced by LPS in RAW 264.7, especially DH. The results of a correlation analysis of structure and anti-inflammatory activity showed that polysaccharides with a high →4)Manp(1→/→4)Glcp(1→ ratio and a molecular weight distribution between 3.343 × 105 Da and 13.540 × 105 Da had better anti-inflammatory activity. The results indicated that the quality evaluation of Dendrobium in clinical applications should investigate molecular weight and the composition of the glycoside bond types and proportions to ensure the consistency of curative effects. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 5838 KiB  
Article
In Silico Characterization of GmbHLH18 and Its Role in Improving Soybean Cyst Nematode Resistance via Genetic Manipulation
by Shuo Qu, Shihao Hu, Miaoli Zhang, Gengchen Song, Fang Liu, Weili Teng, Yuhang Zhan, Yongguang Li, Haiyan Li, Xue Zhao and Yingpeng Han
Agronomy 2025, 15(3), 574; https://doi.org/10.3390/agronomy15030574 - 26 Feb 2025
Viewed by 436
Abstract
Soybean is crucial to food processing and agricultural output. However, pests and diseases can easily impact soybeans, reducing their production. Soybean cyst nematode (SCN) is a soilborne pathogen that has a large geographic range, a long lifespan, and the potential to inflict substantial [...] Read more.
Soybean is crucial to food processing and agricultural output. However, pests and diseases can easily impact soybeans, reducing their production. Soybean cyst nematode (SCN) is a soilborne pathogen that has a large geographic range, a long lifespan, and the potential to inflict substantial harm to the soybean industry. Persistent use of major resistance genes leads to a progressive loss of resistance; therefore, continuous identification of new soybean strains and genes is essential for continued sustainable soybean production. In this research, the SCN-resistant and SCN-sensitive germplasm DN-L10 and Heinong 37 were inoculated with SCN 3. After stress treatment, the stressed roots were collected for RNA-Seq analysis. The sequencing results screened out the differentially expressed gene GmbHLH18. The GmbHLH18 gene was cloned, and the overexpression vector pCAMBIA3300-GmbHLH18 was constructed. Agrobacterium infected soybean hairy roots and genetically modified the roots of DN50 soybeans, and transgenic root seedlings were obtained. The transgenically identified root seedlings were transplanted in soil infested with SCN 3, and resistance to root nematodes was determined by magenta staining. The secondary and tertiary structures of the protein, phosphorylation sites, as well as the hydrophilicity related to the GmbHLH18 gene were analyzed. Subsequently, the recombinant subcellular localization vector pCAMBIA1302-GmbHLH18 was employed. Agrobacterium was injected into tobacco leaves, and organelle-specific expression was observed. Finally, stress resistance-related indexes of the roots of overexpressing plants and WT plants under SCN 3 stress were measured. The results showed that overexpression and subcellular localization vectors were successfully constructed and transformed into Agrobacterium K599 and GV3101, respectively. The encoded protein had 1149 amino acids, a molecular weight of 95.76 kDa, an isoelectric point of 5.04, 60 phosphorylation sites, a tertiary structure of a-helix (36.39%), random coil (53.40%), extended chain (8.64%), and corner (1.57%), and was hydrophilic. The protein that the gene encoded was a nuclear-localized protein, according to the results of subcellular localization analysis. Moreover, the Agrobacterium-induced hairy root test revealed that the number of overexpressed pCAMBIA3300-GmbHLH18 transgenic roots in the unit area of DN50 was substantially lower than in the control group, which at first suggested that the gene had partial resistance to SCN 3. Stress resistance-related indexes suggest that the contents of POD, SOD, and proline in the overexpressing root significantly increase after SCN 3 stress, demonstrating that this gene can enhance the plant’s resistance to the SCN 3 pathogen. Future research could focus on further elucidating the molecular mechanism underlying the gene’s resistance to SCN 3 and exploring its potential application in breeding soybean varieties with enhanced resistance. Full article
Show Figures

Figure 1

18 pages, 1858 KiB  
Article
The Design of a Low-Power Pipelined ADC for IoT Applications
by Junkai Zhang, Tao Sun, Zunkai Huang, Wei Tao, Ning Wang, Li Tian, Yongxin Zhu and Hui Wang
Sensors 2025, 25(5), 1343; https://doi.org/10.3390/s25051343 - 22 Feb 2025
Viewed by 976
Abstract
This paper proposes a low-power 10-bit 20 MS/s pipelined analog-to-digital converter (ADC) designed for the burgeoning needs of low-data-rate communication systems, particularly within the Internet of Things (IoT) domain. To reduce power usage, multiple power-saving techniques are combined, such as sample-and-hold amplifier-less (SHA-less) [...] Read more.
This paper proposes a low-power 10-bit 20 MS/s pipelined analog-to-digital converter (ADC) designed for the burgeoning needs of low-data-rate communication systems, particularly within the Internet of Things (IoT) domain. To reduce power usage, multiple power-saving techniques are combined, such as sample-and-hold amplifier-less (SHA-less) architecture, capacitor scaling, and dynamic comparators. In addition, this paper presents a novel operational amplifier (op-amp) with gain boosting, featuring a dual-input differential pair that enables internal pipeline stage switching, effectively alleviating the crosstalk and memory effects inherent in conventional shared op-amp configurations, thereby further reducing power consumption. A prototype ADC was fabricated in a 180 nm CMOS process and the core size was 0.333 mm2. The ADC implemented operated at a 20 MHz sampling rate under a 1.8 V supply voltage. It achieved a spurious-free dynamic range (SFDR) of 61.83 dB and a signal-to-noise-and-distortion ratio (SNDR) of 54.15 dB while demonstrating a maximum differential non-linearity (DNL) of 0.36 least significant bit (LSB) and a maximum integral non-linearity (INL) of 0.67 LSB. Notably, the ADC consumed less than 5 mW of power at the mentioned sampling frequency, showcasing excellent power efficiency. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

21 pages, 1410 KiB  
Review
The Influence of Physical Exercise, Ketogenic Diet, and Time-Restricted Eating on De Novo Lipogenesis: A Narrative Review
by Antonio Paoli
Nutrients 2025, 17(4), 663; https://doi.org/10.3390/nu17040663 - 13 Feb 2025
Viewed by 5073
Abstract
De novo lipogenesis (DNL) is a metabolic pathway that converts carbohydrates into fatty acids, primarily occurring in the liver and, to a lesser extent, in adipose tissue. While hepatic DNL is highly responsive to dietary carbohydrate intake and regulated by insulin via transcription [...] Read more.
De novo lipogenesis (DNL) is a metabolic pathway that converts carbohydrates into fatty acids, primarily occurring in the liver and, to a lesser extent, in adipose tissue. While hepatic DNL is highly responsive to dietary carbohydrate intake and regulated by insulin via transcription factors like SREBP-1c, adipose DNL is more modest and less sensitive to dietary overfeeding. Dysregulated DNL contributes to metabolic disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). Lifestyle interventions, such as physical exercise, ketogenic diets, and time-restricted eating (TRE) offer promising strategies to regulate DNL and improve metabolic health. Physical exercise enhances glucose uptake in muscles, reduces insulin levels, and promotes lipid oxidation, thereby suppressing hepatic DNL. Endurance and resistance training also improve mitochondrial function, further mitigating hepatic triglyceride accumulation. Ketogenic diets shift energy metabolism toward fatty acid oxidation and ketogenesis, lower insulin, and directly downregulate lipogenic enzyme activity in the liver. TRE aligns feeding with circadian rhythms by optimizing AMP-activated protein kinase (AMPK) activation during fasting periods, which suppresses DNL and enhances lipid metabolism. The combined effects of these interventions demonstrate significant potential for improving lipid profiles, reducing hepatic triglycerides, and preventing lipotoxicity. By addressing the distinct roles of the liver and adipose DNL, these strategies target systemic and localized lipid metabolism dysregulation. Although further research is needed to fully understand their long-term impact, these findings highlight the transformative potential of integrating these approaches into clinical practice to manage metabolic disorders and their associated complications. Full article
Show Figures

Figure 1

14 pages, 3286 KiB  
Article
Vitisin A Outperforms Cyanidin-3-O-Glucoside in Triglyceride Reduction by Modulating Hepatic Lipogenesis and Fatty Acid β-Oxidation
by Yawen Li, Xusheng Li, Jia Liu, Pallavi Jayavanth, Weibin Bai and Rui Jiao
Int. J. Mol. Sci. 2025, 26(4), 1521; https://doi.org/10.3390/ijms26041521 - 11 Feb 2025
Cited by 1 | Viewed by 906
Abstract
Pyranoanthocyanins exhibit greater bioactivity compared to monomeric anthocyanins, yet the lipid-lowering effects of pyranoanthocyanin Vitisin A, a primary derivative found in aged red wines, have not been extensively studied in vivo. This study evaluated the triglyceride-lowering effects of Vitisin A and its anthocyanin [...] Read more.
Pyranoanthocyanins exhibit greater bioactivity compared to monomeric anthocyanins, yet the lipid-lowering effects of pyranoanthocyanin Vitisin A, a primary derivative found in aged red wines, have not been extensively studied in vivo. This study evaluated the triglyceride-lowering effects of Vitisin A and its anthocyanin counterpart Cyanidin-3-O-glucoside (C3G) in both free fatty acid -induced HepG2 cells and high-fat diet-fed ApoE-/- mice, with a focus on their roles in lipid metabolism. In vitro, Vitisin A significantly reduced triglyceride levels and lipid accumulation in HepG2 cells compared to C3G at equivalent concentrate. In vivo, dietary supplementation with 100 mg/kg of Vitisin A reduced body weight gain and plasma triglyceride levels by 19.6% and 29.5%, respectively, whereas no significant effects were observed with C3G. Mechanistically, Vitisin A markedly inhibited hepatic de novo lipogenesis (DNL) by activating the AMPK/ACC signaling pathway and downregulating FASN expression. Concurrently, Vitisin A enhanced fatty acid β-oxidation more robustly than C3G by upregulating CPT-1A via AMPK/SIRT1/PGC-1α and PPAR-α/PGC-1α pathways. Both Vitisin A and C3G driving peroxisomal β-oxidation of very-long-chain fatty acids. In summary, Vitisin A demonstrated superior triglyceride-lowering effects compared to C3G, primarily through dual mechanisms of inhibiting hepatic DNL and enhancing fatty acid β-oxidation. Full article
(This article belongs to the Special Issue Food Nutrition and Lipid Metabolism)
Show Figures

Figure 1

25 pages, 902 KiB  
Article
Discrete Derivative Nonlinear Schrödinger Equations
by Dirk Hennig and Jesús Cuevas-Maraver
Mathematics 2025, 13(1), 105; https://doi.org/10.3390/math13010105 - 30 Dec 2024
Viewed by 629
Abstract
We consider novel discrete derivative nonlinear Schrödinger equations (ddNLSs). Taking the continuum derivative nonlinear Schrödinger equation (dNLS), we use for the discretisation of the derivative the forward, backward, and central difference schemes, respectively, and term the corresponding equations forward, backward, and central ddNLSs. [...] Read more.
We consider novel discrete derivative nonlinear Schrödinger equations (ddNLSs). Taking the continuum derivative nonlinear Schrödinger equation (dNLS), we use for the discretisation of the derivative the forward, backward, and central difference schemes, respectively, and term the corresponding equations forward, backward, and central ddNLSs. We show that in contrast to the dNLS, which is completely integrable and supports soliton solutions, the forward and backward ddNLSs can be either dissipative or expansive. As a consequence, solutions of the forward and backward ddNLSs behave drastically differently compared to those of the (integrable) dNLS. For the dissipative forward ddNLS, all solutions decay asymptotically to zero, whereas for the expansive forward ddNLS all solutions grow exponentially in time, features that are not present in the dynamics of the (integrable) dNLS. In comparison, the central ddNLS is characterized by conservative dynamics. Remarkably, for the central ddNLS the total momentum is conserved, allowing the existence of solitary travelling wave (TW) solutions. In fact, we prove the existence of solitary TWs, facilitating Schauder’s fixed-point theorem. For the damped forward expansive ddNLS we demonstrate that there exists such a balance of dissipation so that solitary stationary modes exist. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

14 pages, 882 KiB  
Article
An 11-Bit Single-Slope/Successive Approximation Register Analog-to-Digital Converters with On-Chip Fine Step Range Calibration for CMOS Image Sensors
by Seong-Jun Byun, Jee-Taeck Seo, Tae-Hyun Kim, Jeong-Hun Lee, Young-Kyu Kim and Kwang-Hyun Baek
Electronics 2025, 14(1), 83; https://doi.org/10.3390/electronics14010083 - 27 Dec 2024
Viewed by 874
Abstract
This paper presents a novel high-precision 11-bit single-slope/successive approximation register analog-to-digital converter (SS/SAR ADC) architecture specifically designed for CMOS image sensors (CISs). The proposed design solves critical challenges in conventional ADCs by utilizing only two reference voltages, thereby minimizing voltage mismatch and completely [...] Read more.
This paper presents a novel high-precision 11-bit single-slope/successive approximation register analog-to-digital converter (SS/SAR ADC) architecture specifically designed for CMOS image sensors (CISs). The proposed design solves critical challenges in conventional ADCs by utilizing only two reference voltages, thereby minimizing voltage mismatch and completely eliminating the need for complex switch arrays. This unique approach reduces the transistor count by 64 per column ADC, significantly enhancing area efficiency and circuit simplicity. Furthermore, a groundbreaking on-chip fine step range calibration technique is introduced to mitigate the impact of parasitic capacitance, ensuring the precise alignment between coarse and fine steps and achieving exceptional linearity. Fabricated using a 0.18-µm CMOS process, the ADC demonstrates superior performance metrics, including a differential nonlinearity (DNL) of −1/+1.86 LSB, an integral nonlinearity (INL) of −2.74/+2.79 LSB, an effective number of bits (ENOB) of 8.3 bits, and a signal-to-noise and distortion ratio (SNDR) of 51.77 dB. Operating at 240 kS/s with a power consumption of 22.16 µW, the ADC achieves an outstanding figure-of-merit (FOMW) of 0.291 pJ/step. These results demonstrate the proposed architecture’s potential as a transformative solution for high-speed, energy-efficient CIS applications. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

33 pages, 4585 KiB  
Article
Optimal Implementation of Tapped Delay Line Time-to-Digital Converters in 20 nm Xilinx UltraScale FPGAs
by Mattia Morabito, Nicola Lusardi, Fabio Garzetti, Gabriele Fiumicelli, Gabriele Bonanno, Enrico Ronconi, Andrea Costa and Angelo Geraci
Electronics 2024, 13(24), 4888; https://doi.org/10.3390/electronics13244888 - 11 Dec 2024
Viewed by 1534
Abstract
This study investigated implementation strategies to optimize the precision of Tapped Delay Line (TDL) Time-to-Digital Converters (TDCs) designed for Xilinx 20 nm UltraScale Field-Programmable Gate Arrays (FPGAs). This optimization process aims to bridge the performance gap between FPGA-based TDCs, which are more flexible [...] Read more.
This study investigated implementation strategies to optimize the precision of Tapped Delay Line (TDL) Time-to-Digital Converters (TDCs) designed for Xilinx 20 nm UltraScale Field-Programmable Gate Arrays (FPGAs). This optimization process aims to bridge the performance gap between FPGA-based TDCs, which are more flexible and suitable for fast prototyping, and the better-performing Application-Specific Integrated Circuit (ASIC) solutions, making FPGA-based TDCs viable for cutting-edge applications. Our key areas of focus included the optimal design of the decoder, the degree of sub-interpolation, and the placement of TDLs, with particular emphasis on the clocking distribution scheme within the Configurable Logic Block (CLB) to minimize the effects of Bubble Errors (BEs) and quantization error. The research led to the development and comparison of multiple TDL TDC solutions implemented on a Kintex UltraScale device (i.e., XCKU040-2FFVA1156E) housed on a KCU105 general-purpose Evaluation Board (EVB). From these, two main solutions emerged: one with high precision and one with low area. The first one was characterized by a Single-Shot Precision (SSP) of 2.64 ps r.m.s., and by Differential and Integral Non-Linearity (DNL/INL) Errors of 0.523 ps and 16.939 ps, respectively, occupying 883 CLBs and 126 kb of Block RAM (BRAM). The second one had an SSP of 3.75 ps r.m.s., a DNL of 0.599 ps, and an INL of 7.151 ps, and it occupies only 259 CLBs and 72 kb of BRAM. Full article
(This article belongs to the Special Issue System-on-Chip (SoC) and Field-Programmable Gate Array (FPGA) Design)
Show Figures

Figure 1

14 pages, 715 KiB  
Article
High-Precision Digital-to-Time Converter with High Dynamic Range for 28 nm 7-Series Xilinx FPGA and SoC Devices
by Fabio Garzetti, Nicola Lusardi, Nicola Corna, Gabriele Fiumicelli, Federico Cattaneo, Gabriele Bonanno, Andrea Costa, Enrico Ronconi and Angelo Geraci
Electronics 2024, 13(23), 4825; https://doi.org/10.3390/electronics13234825 - 6 Dec 2024
Viewed by 979
Abstract
Over the last ten years, the need for high-resolution time-domain digital signal production has grown exponentially. More than ever, applications call for a digital-to-time converter (DTC) that is extremely accurate and precise. Skew compensation and camera shutter operation represent just a few examples [...] Read more.
Over the last ten years, the need for high-resolution time-domain digital signal production has grown exponentially. More than ever, applications call for a digital-to-time converter (DTC) that is extremely accurate and precise. Skew compensation and camera shutter operation represent just a few examples of such applications. The advantages of adopting a flexible and rapid time-to-market strategy focused on fast prototyping using programmable logic devices—such as field-programmable gate arrays (FPGAs) and system-on-chip (SoC)—have become increasingly evident. These benefits outweigh those of performance-focused yet expensive application-specific integrated circuits (ASICs). Despite the availability of various architectures, the high non-recurring engineering (NRE) costs make them unsuitable for low-volume production, especially in research or prototyping environments. To address this trend, we introduce an innovative DTC IP-Core with a resolution, also known as least significant bit (LSB), of 52 ps, compatible with all Xilinx 7-Series FPGAs and SoCs. Measurements have been performed on a low-end Artix-7 XC7A100TFTG256-2, guaranteeing a jitter lower than 50 ps r.m.s. and offering a high dynamic range up to 56 ms. With resource utilization below 1% and a dynamic power dissipation of 285 mW for our target FPGA, the design maintains excellent differential and integral nonlinearity errors (DNL/INL) of 1.19 LSB and 1.56 LSB, respectively. Full article
(This article belongs to the Special Issue Feature Papers in Circuit and Signal Processing)
Show Figures

Figure 1

18 pages, 2313 KiB  
Review
Inappropriate Diet Exacerbates Metabolic Dysfunction-Associated Steatotic Liver Disease via Abdominal Obesity
by Minghui Xiang, Xiaoli Tian, Hui Wang, Ping Gan and Qian Zhang
Nutrients 2024, 16(23), 4208; https://doi.org/10.3390/nu16234208 - 5 Dec 2024
Cited by 3 | Viewed by 2157
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a refined categorization of non-alcoholic fatty liver disease (NAFLD), highlighting the intricate relationship between hepatic steatosis and metabolic dysfunction. Abdominal obesity (AO), a key diagnostic criterion for metabolic dysfunction, predominantly results from inappropriate diet and unhealthy [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a refined categorization of non-alcoholic fatty liver disease (NAFLD), highlighting the intricate relationship between hepatic steatosis and metabolic dysfunction. Abdominal obesity (AO), a key diagnostic criterion for metabolic dysfunction, predominantly results from inappropriate diet and unhealthy dietary habits. To comprehensively investigate which dietary factors contribute to MASLD through AO and to understand the underlying biological mechanisms, we initially conducted a systematic review of meta-analysis articles in the PubMed database from the past decade, summarizing dietary factors that affect AO. Subsequently, we conducted targeted searches in the PubMed database for these dietary factors and provided a narrative review of the mechanisms of how these dietary factors lead to AO and how AO exacerbates MASLD. A diet characterized by excessive intake of energy, carbohydrates, fructose, or ultra-processed foods (UPFs) is considered inappropriate. Inappropriate diet leads to the formation of MASLD and AO by enhancing pathways such as de novo lipid synthesis (DNL) in the liver, insulin resistance (IR), gut–liver dysfunction, and inflammation. Dietary interventions for inappropriate diets can effectively intervene in and improve MASLD and AO. The mechanism of inappropriate diet on abdominal fat deposition is through excessive energy or the activation of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) to increase endocortisol secretion. Then, the excessive accumulation of visceral fat facilitates a rapid and augmented flux of free fatty acids (FFAs) to the liver and initiates a series of deleterious effects, including oxidative stress (OS), endoplasmic reticulum stress (ERS), activation of protein kinase C (PKC) pathways, and inflammation. Additionally, FFAs may mediate excessive lipid deposition and hepatocellular damage through the action of hormones. These pathways to liver damage exacerbate MASLD and progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis. Furthermore, investigating other potential mechanisms by which AO may influence MASLD could offer new recommendations for the treatment guidelines of MASLD. Full article
Show Figures

Figure 1

25 pages, 9124 KiB  
Article
Enteric Delayed-Release Granules Loading Dendrobine Ameliorates Hyperlipidemia in Mice by Regulating Intestinal Flora Composition
by Shunqiang Song, Liangyu Yang, Tingting Chen and Yongai Xiong
Pharmaceutics 2024, 16(11), 1483; https://doi.org/10.3390/pharmaceutics16111483 - 20 Nov 2024
Cited by 1 | Viewed by 905
Abstract
Background/Objectives: In this paper, we created enteric delayed-release granules that load Dendrobine (DNL) directly into the intestinal flora of hyperlipidemic mice, based on the relationship between intestinal flora and hyperlipidemia. Methods: We then used pharmacodynamics and 16 Sr RNA high-throughput sequencing [...] Read more.
Background/Objectives: In this paper, we created enteric delayed-release granules that load Dendrobine (DNL) directly into the intestinal flora of hyperlipidemic mice, based on the relationship between intestinal flora and hyperlipidemia. Methods: We then used pharmacodynamics and 16 Sr RNA high-throughput sequencing to examine the hypolipidemic effects and mechanism of these granules. Solvent evaporation was used to create the DNL, which was then characterized using FT–IR, XRD, SEM, and DSC. A high-fat diet was used to create the mouse model of hyperlipidemia in C57BL/6J mice. Dendrobine, various dosages of DNL, TMAO, and the combination of TMAO and DNL were subsequently gavaged on the mice. The makeup of the intestinal flora in the mouse colon was analyzed using 16S rRNA sequencing, and the effectiveness and mechanism of DNL in controlling the intestinal flora for the treatment of hyperlipidemia in mice were investigated. Results/Conclusions: The findings showed that DNL could effectively improve the dysbiosis brought on by hyperlipidemia by significantly lowering the mice’s body weight and blood lipid level (p < 0.05), while also regulating the function of their intestinal flora, increasing the abundance of Actinobacteria (p < 0.05) and Thick-walled bacterium (p < 0.05), and decreasing the abundance of Desulfovibrio (p < 0.05) and Mycobacterium anisopliae (p < 0.05) in the intestinal flora of mice, inhibiting the growth of intestinal harmful microorganisms, providing space for the reproduction of beneficial bacteria, and thus maintaining the stability of the intestinal flora’s structure. Full article
Show Figures

Figure 1

16 pages, 3143 KiB  
Article
A Low-Power 5-Bit Two-Step Flash Analog-to-Digital Converter with Double-Tail Dynamic Comparator in 90 nm Digital CMOS
by Reena George and Nagesh Ch
J. Low Power Electron. Appl. 2024, 14(4), 53; https://doi.org/10.3390/jlpea14040053 - 4 Nov 2024
Viewed by 2157
Abstract
Low-power portable devices play a major role in IoT applications, where the analog-to-digital converters (ADCs) are very important components for the processing of analog signals. In this paper, a 5-bit two-step flash ADC with a low-power double-tail dynamic comparator (DTDC) using the control [...] Read more.
Low-power portable devices play a major role in IoT applications, where the analog-to-digital converters (ADCs) are very important components for the processing of analog signals. In this paper, a 5-bit two-step flash ADC with a low-power double-tail dynamic comparator (DTDC) using the control switching technique is presented. The most significant bit (MSB) in the proposed design is produced by only one low-power DTDC in the first stage, and the remaining bits are generated by the flash ADC in the second stage with the help of an auto-control circuit. A control circuit produced reference voltages with respect to the control input and mid-point voltage (Vk). The proposed design and simulations are carried out using 90 nm CMOS technology. The result shows that the peak differential non-linearity (DNL) and integral non-linearity (INL) are +0.60/−0.69 and +0.66/−0.40 LSB, respectively. The signal-to-noise and distortion ratio (SNDR) for an input signal having a frequency of 1.75 MHz is found to be 30.31 dB. The total power consumption of the proposed design is significantly reduced, which is 439.178 μW for a supply voltage of 1.2 V. The figure of merit (FOM) is about 0.054 pJ/conversion step at 250 MS/s. The present design provides low power consumption and occupies less area compared to the existing works. Full article
(This article belongs to the Special Issue Analog/Mixed-Signal Integrated Circuit Design)
Show Figures

Figure 1

19 pages, 9245 KiB  
Article
6-Gingerol Inhibits De Novo Lipogenesis by Targeting Stearoyl-CoA Desaturase to Alleviate Fructose-Induced Hepatic Steatosis
by Pan Li, Tingting Wang, Hongmei Qiu, Ruoyu Zhang, Chao Yu and Jianwei Wang
Int. J. Mol. Sci. 2024, 25(20), 11289; https://doi.org/10.3390/ijms252011289 - 20 Oct 2024
Cited by 1 | Viewed by 1874
Abstract
Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD), is a worldwide liver disease without definitive or widely used therapeutic drugs in clinical practice. In this study, we confirm that 6-gingerol (6-G), an active ingredient of ginger (Zingiber [...] Read more.
Metabolic-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD), is a worldwide liver disease without definitive or widely used therapeutic drugs in clinical practice. In this study, we confirm that 6-gingerol (6-G), an active ingredient of ginger (Zingiber officinale Roscoe) in traditional Chinese medicine (TCM), can alleviate fructose-induced hepatic steatosis. It was found that 6-G significantly decreased hyperlipidemia caused by high-fructose diets (HFD) in rats, and reversed the increase in hepatic de novo lipogenesis (DNL) and triglyceride (TG) levels induced by HFD, both in vivo and in vitro. Mechanistically, chemical proteomics and cellular thermal shift assay (CETSA)–proteomics approaches revealed that stearoyl-CoA desaturase (SCD) is a direct binding target of 6-G, which was confirmed by further CETSA assay and molecular docking. Meanwhile, it was found that 6-G could not alter SCD expression (in either mRNA or protein levels), but inhibited SCD activity (decreasing the desaturation levels of fatty acids) in HFD-fed rats. Furthermore, SCD deficiency mimicked the ability of 6-G to reduce lipid accumulation in HF-induced HepG2 cells, and impaired the improvement in hepatic steatosis brought about by 6-G treatment in HFD supplemented with oleic acid diet-induced SCD1 knockout mice. Taken together, our present study demonstrated that 6-G inhibits DNL by targeting SCD to alleviate fructose diet-induced hepatic steatosis. Full article
(This article belongs to the Special Issue Nutrients and Active Substances in Natural Products)
Show Figures

Figure 1

Back to TopTop