Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = Eucalyptus radiata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2208 KiB  
Article
Evaluation of Fire Incidence in Spanish Forest Species
by Álvaro Enríquez-de-Salamanca
Fire 2025, 8(8), 312; https://doi.org/10.3390/fire8080312 - 6 Aug 2025
Viewed by 648
Abstract
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, [...] Read more.
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, and recurrence were calculated for each species, and with them, fire incidence indices were obtained. Significant fire incidence was detected in Pinus canariensis, P. pinaster, Eucalyptus globulus, Quercus robur, Betula spp., Castanea sativa, Pinus radiata, and Quercus pyrenaica. Most of the species with the highest fire incidence are not located in the areas with the highest climatic hazard. There is limited correlation between flammability and fire extension, and this is not significant when considering fire incidence. The relationship between fire incidence and conifers is valid in absolute terms, but only partially in relative terms. Similarly, there is no general relationship between relative fire incidence and species with a natural or reforested origin. Some native hardwood species have unexpectedly high incidence, probably due to collateral damage caused by fires in nearby pine and eucalyptus stands. The fire incidence index of forest species is useful for forest management and for protecting species that are suffering severely from fire effects. Full article
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 634
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

14 pages, 2561 KiB  
Article
Wood Species Differentiation: A Comparative Study of Direct Analysis in Real-Time and Chromatography Mass Spectrometry
by Ilena Isak, Harriet Laura Newson and Tripti Singh
Forests 2025, 16(2), 255; https://doi.org/10.3390/f16020255 - 30 Jan 2025
Cited by 1 | Viewed by 1805
Abstract
This study reports for the first time the fingerprinting extractives analysis of the indigenous wood species of Podocarpus totara from New Zealand, Eucalyptus saligna from Australia and Pinus radiata imported from California, USA and grown in New Zealand. We evaluated the use of [...] Read more.
This study reports for the first time the fingerprinting extractives analysis of the indigenous wood species of Podocarpus totara from New Zealand, Eucalyptus saligna from Australia and Pinus radiata imported from California, USA and grown in New Zealand. We evaluated the use of analytical techniques for wood species discrimination. We compared the chemical fingerprinting of extractive compounds obtained using traditional chromatographic techniques with direct analysis in real-time–time of flight-mass spectrometry (DART-TOF-MS) with the auxiliary of chemometrics and principal component analysis. The traditional wet chemistry analysis of wood extracts provided a comprehensive characterisation of all extractive components. However, the more eco-friendly, sustainable and faster DART-TOF-MS technique effectively distinguished between wood species when heartwood and sapwood samples were combined. Notably, neither wet chemistry nor DART-TOF-MS could clearly differentiate between heartwood and sapwood within the same wood species. DART-TOF-MS analysis demonstrates potential as a reliable quality control tool for identifying wood species necessary in commercial and timber trading markets as well as for detecting the illicit trade of counterfeit wood products. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

27 pages, 3310 KiB  
Article
Evaluation of Correction Algorithms for Sentinel-2 Images Implemented in Google Earth Engine for Use in Land Cover Classification in Northern Spain
by Iyán Teijido-Murias, Marcos Barrio-Anta and Carlos A. López-Sánchez
Forests 2024, 15(12), 2192; https://doi.org/10.3390/f15122192 - 12 Dec 2024
Cited by 3 | Viewed by 2696
Abstract
This study examined the effect of atmospheric, topographic, and Bidirectional Reflectance Distribution Function (BRDF) corrections of Sentinel-2 images implemented in Google Earth Engine (GEE) for use in land cover classification. The study was carried out in an area of complex orography in northern [...] Read more.
This study examined the effect of atmospheric, topographic, and Bidirectional Reflectance Distribution Function (BRDF) corrections of Sentinel-2 images implemented in Google Earth Engine (GEE) for use in land cover classification. The study was carried out in an area of complex orography in northern Spain and made use of the Spanish National Forest Inventory plots and other systematically located plots to cover non-forest classes. A total of 2991 photo-interpreted ground plots and 15 Sentinel-2 images, acquired in summer at a spatial resolution of 10–20 m per pixel, were used for this purpose. The overall goal was to determine the optimal level of image correction in GEE for subsequent use in time series analysis of images for accurate forest cover classification. Particular attention was given to the classification of cover by the major commercial forest species: Eucalyptus globulus, Eucalyptus nitens, Pinus pinaster, and Pinus radiata. The Second Simulation of the Satellite Signal in the Solar Spectrum (Py6S) algorithm, used for atmospheric correction, provided the best compromise between execution time and image size, in comparison with other algorithms such as Sentinel-2 Level 2A Processor (Sen2Cor) and Sensor Invariant Atmospheric Correction (SIAC). To correct the topographic effect, we tested the modified Sun-canopy-sensor topographic correction (SCS + C) algorithm with digital elevation models (DEMs) of three different spatial resolutions (90, 30, and 10 m per pixel). The combination of Py6S, the SCS + C algorithm and the high-spatial resolution DEM (10 m per pixel) yielded the greatest precision, which demonstrated the need to match the pixel size of the image and the spatial resolution of the DEM used for topographic correction. We used the Ross-Thick/Li-Sparse-Reciprocal BRDF to correct the variation in reflectivity captured by the sensor. The BRDF corrections did not significantly improve the accuracy of the land cover classification with the Sentinel-2 images acquired in summer; however, we retained this correction for subsequent time series analysis of the images, as we expected it to be of much greater importance in images with larger solar incidence angles. Our final proposed dataset, with image correction for atmospheric (Py6S), topographic (SCS + C), and BRDF (Ross-Thick/Li-Sparse-Reciprocal BRDF) effects and a DEM of spatial resolution 10 m per pixel, yielded better goodness-of-fit statistics than other datasets available in the GEE catalogue. The Sentinel-2 images currently available in GEE are therefore not the most accurate for constructing land cover classification maps in areas with complex orography, such as northern Spain. Full article
Show Figures

Figure 1

14 pages, 1619 KiB  
Article
Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach
by Yannay Casas-Ledón, Javiera Silva, Sebastián Larrere and Yenisleidy Martínez-Martínez
Sustainability 2024, 16(23), 10173; https://doi.org/10.3390/su162310173 - 21 Nov 2024
Viewed by 959
Abstract
Land management is critical for the conservation of natural resources, particularly in agroforestry systems which rely heavily on land productivity and availability. Optimizing land utilization is critical for sustainable biomass production and is a key component of achieving effective, long-term sustainable land management. [...] Read more.
Land management is critical for the conservation of natural resources, particularly in agroforestry systems which rely heavily on land productivity and availability. Optimizing land utilization is critical for sustainable biomass production and is a key component of achieving effective, long-term sustainable land management. This study assesses the resource efficiency of agroforestry production systems with a novel exergy-based indicator (ΔEF). The indicator was used in the Biobío and Ñuble regions to assess the resource balance between six agricultural and two forestry production systems. The ΔEF values ranged from positive to negative, with positive values indicating better resource usage and negative values suggesting the opposite. Eucalyptus globulus had higher ΔEF values (18.06–19.5 MJex/m2.yr) than Pinus radiata (−2.71 to −1.47 MJex/m2.yr), indicating better sustainability due to its high biomass yields and lower harvesting period and resource consumption. Sugar beet, wheat, and potatoes were the most sustainable (8.57–154.6 MJex/m2.yr) because of their high yields and less intensive harvesting methods. Disparities in biomass yield, potential net primary production (NPPpot), and land management intensity drive differences in ΔEF across regions. Our findings enhance the understanding of local and non-local resource efficiency in agroforestry systems, revealing significant drivers to encourage more sustainable land management practices. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Graphical abstract

20 pages, 5333 KiB  
Article
Green Synthesis of Fe2O3 Nanoparticles Using Eucalyptus globulus Leaf Extract on Pinus radiata Sawdust for Cationic Dye Adsorption
by Pablo Salgado, Eduardo Aedo and Gladys Vidal
Nanomaterials 2024, 14(22), 1832; https://doi.org/10.3390/nano14221832 - 16 Nov 2024
Cited by 2 | Viewed by 1449
Abstract
The present study reports the synthesis of Fe2O3 nanoparticles on Pinus radiata sawdust (Fe2O3@PS) using a Eucalyptus globulus leaf extract. The morphology and structure of Fe2O3@PS were characterized using scanning electron microscopy [...] Read more.
The present study reports the synthesis of Fe2O3 nanoparticles on Pinus radiata sawdust (Fe2O3@PS) using a Eucalyptus globulus leaf extract. The morphology and structure of Fe2O3@PS were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis diffuse reflectance. The adsorption capacity of the system was evaluated by testing its ability to remove the Rhodamine B (RhB) dye. The optimization of the system was carried out using the Plackett–Burman design (PBD) and the response surface methodology (steepest ascent and the Box–Behnken design), which provided information on the main parameters affecting the adsorption process. The PBD results showed that the most important parameters for the removal of RhB using Fe2O3@PS were the removal time, the RhB concentration, and the initial pH of the system. The reusability of Fe2O3@PS under optimal conditions was tested and it was found to maintain its efficiency after five cycles of use. The efficiency and rate of RhB removal observed at pH values near 7.0 were found to be predominantly influenced by electrostatic interactions. In contrast, the analyses conducted at pH values near 8.3 exhibited reduced influence from electrostatic attractions, with π–π interactions and hydrogen bonds emerging as dominant forces. At pH values exceeding 8.3, all potential interactions between RhB and Fe2O3@PS exhibited diminished strength. This research provides valuable information on the formation of eco-friendly nanoparticles immobilized on a forest residue such as sawdust, which can effectively remove organic pollutants like RhB. This contributes to the valorization of resources and the search for solutions to water pollution. Full article
Show Figures

Figure 1

18 pages, 3700 KiB  
Article
Biomass Valorization through Catalytic Pyrolysis Using Metal-Impregnated Natural Zeolites: From Waste to Resources
by Diego Venegas-Vásconez, Lourdes Orejuela-Escobar, Alfredo Valarezo-Garcés, Víctor H. Guerrero, Luis Tipanluisa-Sarchi and Serguei Alejandro-Martín
Polymers 2024, 16(13), 1912; https://doi.org/10.3390/polym16131912 - 4 Jul 2024
Cited by 3 | Viewed by 1851
Abstract
Catalytic biomass pyrolysis is one of the most promising routes for obtaining bio-sustainable products that replace petroleum derivatives. This study evaluates the production of aromatic compounds (benzene, toluene, and xylene (BTX)) from the catalytic pyrolysis of lignocellulosic biomass (Pinus radiata (PR) and [...] Read more.
Catalytic biomass pyrolysis is one of the most promising routes for obtaining bio-sustainable products that replace petroleum derivatives. This study evaluates the production of aromatic compounds (benzene, toluene, and xylene (BTX)) from the catalytic pyrolysis of lignocellulosic biomass (Pinus radiata (PR) and Eucalyptus globulus (EG)). Chilean natural zeolite (NZ) was used as a catalyst for pyrolysis reactions, which was modified by double ion exchange (H2NZ) and transition metals impregnation (Cu5H2NZ and Ni5H2NZ). The catalysts were characterized by nitrogen adsorption, X-ray diffraction (XRD), ammonium programmed desorption (TPD-NH3), and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) allowed us to study the influence of natural and modified zeolite catalysts on BTX production. XRD analysis confirmed the presence of metal oxides (CuO and NiO) in the zeolite framework, and SEM-EDS confirmed successful metal impregnation (6.20% for Cu5H2NZ and 6.97% for Ni5H2NZ). Py-GC/MS revealed a reduction in oxygenated compounds such as esters, ketones, and phenols, along with an increase in aromatic compounds in PR from 2.92% w/w (without catalyst) to 20.89% w/w with Ni5H2NZ at a biomass/catalyst ratio of 1/5, and in EG from 2.69% w/w (without catalyst) to 30.53% w/w with Ni5H2NZ at a biomass/catalyst ratio of 1/2.5. These increases can be attributed to acidic sites within the catalyst pores or on their surface, facilitating deoxygenation reactions such as dehydration, decarboxylation, decarbonylation, aldol condensation, and aromatization. Overall, this study demonstrated that the catalytic biomass pyrolysis process using Chilean natural zeolite modified with double ion exchange and impregnated with transition metals (Cu and Ni) could be highly advantageous for achieving significant conversion of oxygenated compounds into hydrocarbons and, consequently, improving the quality of the condensed pyrolysis vapors. Full article
Show Figures

Figure 1

13 pages, 26256 KiB  
Article
Predicting Wood Density Using Resistance Drilling: The Effect of Varying Feed Speed and RPM
by Vilius Gendvilas, Geoffrey M. Downes, Marco Lausberg, Jonathan J. Harrington and David J. Lee
Forests 2024, 15(4), 579; https://doi.org/10.3390/f15040579 - 22 Mar 2024
Cited by 8 | Viewed by 2035
Abstract
The IML PD series Resi is a device used to assess the drilling resistance of wood. The IML PD series Resi instrument is being widely adopted for commercial wood quality assessment due to its speed, cost-effectiveness, and precision when combined with web-based trace [...] Read more.
The IML PD series Resi is a device used to assess the drilling resistance of wood. The IML PD series Resi instrument is being widely adopted for commercial wood quality assessment due to its speed, cost-effectiveness, and precision when combined with web-based trace processing. Collecting Resi data with fixed feed speed and RPM settings is challenging due to inherent basic density variations within and between tree species. Altering these settings affects the drilling resistance amplitude of the Resi data, impacting basic density predictions. This study introduces the concept of chip thickness to combine feed speed and RPM into a single parameter to minimise the effects of different sampling conditions on the basic density predictions. Regression models, with chip thickness as the regressor variable, account for 97% to 99% of variance in mean Resi outerwood amplitude across six species. The demonstrated adaptability of chip thickness for adjusting feed speed and RPM settings, along with species-specific functions correlating it with Resi amplitude, holds promise for standardizing amplitude values across diverse feed speeds and RPM settings. Optimal sampling conditions needed to predict basic density lie within the 30%–40% amplitude range. To drill a ~30 cm diameter tree, the recommended fastest settings were 200 cm/min and 3500 RPM for Southern Pine (Pinus elliottii var. elliottii (Engelm) × Pinus caribaea var. hondurensis (Sénéclauze)) and Radiata Pine (Pinus radiata (D. Don.)), 200 cm/min and 2500 RPM for Hoop Pine (Araucaria cunninghamii (Mudie)), 50 cm/min and 5000 RPM for Spotted Gum (Corymbia citriodora subsp. variegata (F. Muell.)), 200 cm/min and 4500 RPM for White Cypress (Callitris glaucophylla (Thompson & Johnson)), and 150 cm/min and 3500 RPM for Shining Gum (Eucalyptus nitens (H. Deane & Maiden) Maiden) based on the billets sampled. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties)
Show Figures

Figure 1

21 pages, 2649 KiB  
Article
Extracted Eucalyptus globulus Bark Fiber as a Potential Substrate for Pinus radiata and Quillaja saponaria Germination
by Víctor Ferrer-Villasmil, Cecilia Fuentealba, Pablo Reyes-Contreras, Rafael Rubilar, Gustavo Cabrera-Barjas, Gastón Bravo-Arrepol and Danilo Escobar-Avello
Plants 2024, 13(6), 789; https://doi.org/10.3390/plants13060789 - 11 Mar 2024
Cited by 5 | Viewed by 2472
Abstract
This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the [...] Read more.
This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the physicochemical parameters of the growing media, the germination rate, and the mean fresh and dry weights of seedlings. We used the Munoo-Liisa Vitality Index (MLVI) test to evaluate the phytotoxicity of the bark alone and when mixed with commercial substrates. Generally, the best mixture for seed growth was 75% extracted eucalyptus bark fiber and 25% commercial substrates. In particular, the 75E-25P (peat) mixture is a promising substitute for seedling growth of Pinus radiata, achieving up to 3-times higher MLVI than the control peat alone. For Quillaja saponaria, the best growth substrate was the 50E-50C (coconut fiber) mixture, which had the most significant MLVI values (127%). We added chitosan and alginate-encapsulated fulvic acid phytostimulants to improve the performance of the substrate mixtures. The fulvic acid, encapsulated or not, significantly improved MLVI values in Q. saponaria species and P. radiata in concentrations between 0.05 and 0.1% w/v. This study suggests that mixtures with higher levels of extracted fiber are suitable for growing forest species, thus promoting the application of circular economy principles in forestry. Full article
(This article belongs to the Special Issue Soil Fertility Management for Plant Growth and Development)
Show Figures

Figure 1

12 pages, 293 KiB  
Article
In Vitro Effect of Eucalyptus Essential Oils and Antiseptics (Chlorhexidine Gluconate and Povidone-Iodine) against Bacterial Isolates from Equine Wounds
by José Pimenta, Carla Dias, Mário Cotovio and Maria José Saavedra
Vet. Sci. 2024, 11(1), 12; https://doi.org/10.3390/vetsci11010012 - 26 Dec 2023
Cited by 2 | Viewed by 3733
Abstract
Considering the increasing antibiotics resistance, there has been a propensity to replace them with antiseptics when it comes to wound management and treatment. Nevertheless, in recent years, there have been reports regarding resistance to antiseptics by some bacterial strains. There is also concern [...] Read more.
Considering the increasing antibiotics resistance, there has been a propensity to replace them with antiseptics when it comes to wound management and treatment. Nevertheless, in recent years, there have been reports regarding resistance to antiseptics by some bacterial strains. There is also concern about the environmental impact of these substances. The aim of this study was to compare the antimicrobial efficacy of antiseptics and eucalyptus essential oils on bacterial strains from horse’s wounds. We used twelve Escherichia coli, eight Staphylococcus aureus, two Staphylococcus pseudintermedius, one Staphylococcus vitulinus and one Staphylococcus saprophyticus strains from equine wounds. The effect of Eucalyptus radiata essential oil, Eucalyptus globulus essential oil, povidone-iodine and chlorhexidine gluconate against the isolated strains was evaluated applying the Kirby-Baüer method. Regarding the Escherichia coli strains, E. radiata and the mixture of E. radiata and E. globulus had a better inhibitory effect than antiseptics. E. globulus had a better effect against most Staphylococcus spp. compared to E. radiata. For both Gram-negative and Gram-positive strains tested, chlorhexidine gluconate had a better inhibitory effect than povidone-iodine. The antibacterial efficacy of essential oils highlights their potential to substitute or complement the use of antiseptics and so reduce resistance to antiseptics. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Resistance in Farm Animals)
16 pages, 3225 KiB  
Article
In Vitro and In Silico Activities of E. radiata and E. cinerea as an Enhancer of Antibacterial, Antioxidant, and Anti-Inflammatory Agents
by Hayet Elkolli, Meriem Elkolli, Farid S. Ataya, Mounir M. Salem-Bekhit, Sami Al Zahrani, Mostafa W. M. Abdelmageed, Barbara Ernst and Yacine Benguerba
Molecules 2023, 28(20), 7153; https://doi.org/10.3390/molecules28207153 - 18 Oct 2023
Cited by 1 | Viewed by 3022
Abstract
Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous [...] Read more.
Eucalyptus, a therapeutic plant mentioned in the ancient Algerian pharmacopeia, specifically two species belonging to the Myrtaceae family, E. radiata and E. cinerea, were investigated in this study for their antibacterial, antioxidant, and anti-inflammatory properties. The study used aqueous extracts (AE) obtained from these plants, and the extraction yields were found to be different. The in vitro antibacterial activity was evaluated using a disc diffusion assay against three typical bacterial strains. The results showed that the two extracts were effective against all three strains. Both extracts displayed significant antioxidant activity compared to BHT. The anti-inflammatory impact was evaluated using a protein (BSA) inhibition denaturation test. The E. radiata extract was found to inhibit inflammation by 85% at a concentration of 250 µg/mL, significantly higher than the Aspirin. All phytoconstituents present good pharmacokinetic characteristics without toxicity except very slight toxicity of terpineol and cineol and a maximum binding energy of −7.53 kcal/mol for its anti-TyrRS activity in silico. The study suggests that the extracts and their primary phytochemicals could enhance the efficacy of antibiotics, antioxidants, and non-steroidal anti-inflammatory drugs (NSAIDs). As pharmaceutical engineering experts, we believe this research contributes to developing natural-based drugs with potential therapeutic benefits. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

21 pages, 3714 KiB  
Article
Analytical Pyrolysis of Pinus radiata and Eucalyptus globulus: Effects of Microwave Pretreatment on Pyrolytic Vapours Composition
by Diego Venegas-Vásconez, Luis E. Arteaga-Pérez, María Graciela Aguayo, Romina Romero-Carrillo, Víctor H. Guerrero, Luis Tipanluisa-Sarchi and Serguei Alejandro-Martín
Polymers 2023, 15(18), 3790; https://doi.org/10.3390/polym15183790 - 17 Sep 2023
Cited by 9 | Viewed by 2050
Abstract
Pinus radiata (PR) and Eucalyptus globulus (EG) are the most planted species in Chile. This research aims to evaluate the pyrolysis behaviour of PR and EG from the Bío Bío region in Chile. Biomass samples were subjected to microwave pretreatment considering power (259, [...] Read more.
Pinus radiata (PR) and Eucalyptus globulus (EG) are the most planted species in Chile. This research aims to evaluate the pyrolysis behaviour of PR and EG from the Bío Bío region in Chile. Biomass samples were subjected to microwave pretreatment considering power (259, 462, 595, and 700 W) and time (1, 2, 3, and 5 min). The maximum temperature reached was 147.69 °C for PR and 130.71 °C for EG in the 700 W-5 min condition, which caused the rearrangement of the cellulose crystalline chains through vibration and an increase in the internal energy of the biomass and the decomposition of lignin due to reaching its glass transition temperature. Thermogravimetric analysis revealed an activation energy (Ea) reduction from 201.71 to 174.91 kJ·mol−1 in PR and from 174.80 to 158.51 kJ·mol−1 in EG, compared to the untreated condition (WOT) for the 700 W-5 min condition, which indicates that microwave pretreatment improves the activity of the components and the decomposition of structural compounds for subsequent pyrolysis. Functional groups were identified by Fourier transform infrared spectroscopy (FTIR). A decrease in oxygenated compounds such as acids (from 21.97 to 17.34% w·w−1 and from 27.72 to 24.13% w·w−1) and phenols (from 34.41 to 31.95% w·w−1 and from 21.73 to 20.24% w·w−1) in PR and EG, respectively, was observed in comparison to the WOT for the 700 W-5 min condition, after analytical pyrolysis. Such results demonstrate the positive influence of the pretreatment on the reduction in oxygenated compounds obtained from biomass pyrolysis. Full article
(This article belongs to the Special Issue Renewable and Sustainable Polymers)
Show Figures

Graphical abstract

18 pages, 1845 KiB  
Article
Biomass Identification from Proximate Analysis: Characterization of Residual Vegetable Materials in Andean Areas
by Borja Velázquez Martí, Juan Gaibor-Chávez, John Eloy Franco Rodríguez and Isabel López Cortés
Agronomy 2023, 13(9), 2347; https://doi.org/10.3390/agronomy13092347 - 9 Sep 2023
Cited by 7 | Viewed by 2765
Abstract
This work was aimed at the characterization of residual generated biomass from pruned tree species present in the Andean areas of Ecuador as a source of energy, both in plantations and in urban areas, as a response to the change in the energy [...] Read more.
This work was aimed at the characterization of residual generated biomass from pruned tree species present in the Andean areas of Ecuador as a source of energy, both in plantations and in urban areas, as a response to the change in the energy matrix proposed by the Ecuadorian government. From the proximate analysis (volatiles, ashes, and fixed carbon content), elemental analysis (C, H, N, S, O, and Cl), structural analysis (cellulose, lignin, and hemicellulose content), and higher heating value, the studied species were pine (Pinus radiata), cypress (Cupressus macrocarpa), eucalyptus (Eucalyptus globulus), poplar (Populus sp.), arupo (Chionanthus pubescens), alder (Alnus Acuminata), caper spurge (Euphorbia laurifolia), and lime (Sambucus nigra L.) trees. We evaluated the influence of the presence of leaves in the biomass. From this characterization, we developed a method based on obtaining the main components for the identification of the biomass’s species. If the origin of the biomass was unknown, this method enabled us to identify the species, with all its characteristics. If the origin of the biomass was unknown, this innovative method enabled the identification of the species from the lignocellulosic biomass, with all of its characteristics. Finally, we developed regression models that relate the higher heating value to the elemental, proximate, and structural composition. Full article
(This article belongs to the Special Issue Agricultural Biomass Waste Conversion into Value-Added Products)
Show Figures

Figure 1

24 pages, 11404 KiB  
Article
Pyrolysis of Chilean Southern Lignocellulosic Biomasses: Isoconversional Kinetics Analysis and Pyrolytic Products Distribution
by Cristian Cerda-Barrera, Kevin J. Fernández-Andrade and Serguei Alejandro-Martín
Polymers 2023, 15(12), 2698; https://doi.org/10.3390/polym15122698 - 16 Jun 2023
Cited by 6 | Viewed by 2274
Abstract
Biomass provides potential benefits for obtaining value-added compounds instead of straight burning; as Chile has forestry potential that supports such benefits, it is crucial to understand the biomasses’ properties and their thermochemical behaviour. This research presents a kinetic analysis of thermogravimetry, and pyrolysis [...] Read more.
Biomass provides potential benefits for obtaining value-added compounds instead of straight burning; as Chile has forestry potential that supports such benefits, it is crucial to understand the biomasses’ properties and their thermochemical behaviour. This research presents a kinetic analysis of thermogravimetry, and pyrolysis of representative species in the biomass of southern Chile, heating biomasses at 5 to 40 °C·min−1 rates before being subjected to thermal volatilisation. The activation energy (Ea) was calculated from conversion using model-free methods (Flynn–Wall–Ozawa (FWO), Kissinger–Akahira–Sunose (KAS), and Friedman (FR)), as well as the Kissinger method based on the maximum reaction rate. The average Ea varied between KAS 117 and 171 kJ·mol−1, FWO 120–170 kJ·mol−1, and FR 115–194 kJ·mol−1 for the five biomasses used. Pinus radiata (PR) was identified as the most suited wood for producing value-added goods based on the Ea profile for the conversion (α), along with Eucalyptus nitens (EN) for its high value of reaction constant (k). Each biomass demonstrated accelerated decomposition (an increase in k relative to α). The highest concentration of bio-oil containing phenolic, ketonic, and furanic compounds was produced by the forestry exploitation biomasses PR and EN, demonstrating the viability of these materials for thermoconversion processes. Full article
Show Figures

Graphical abstract

21 pages, 2573 KiB  
Article
Pretreated Eucalyptus globulus and Pinus radiata Barks: Potential Substrates to Improve Seed Germination for a Sustainable Horticulture
by Danilo Escobar-Avello, Víctor Ferrer, Gastón Bravo-Arrepol, Pablo Reyes-Contreras, Juan P. Elissetche, Jorge Santos, Cecilia Fuentealba and Gustavo Cabrera-Barjas
Forests 2023, 14(5), 991; https://doi.org/10.3390/f14050991 - 11 May 2023
Cited by 8 | Viewed by 3850
Abstract
Commercial forest plantations in Chile are dominated by pine (Pinus radiata) and eucalyptus (Eucalyptus globulus). Tree bark is the main by-product of the forestry industry and has low value, but great potential for use as an agricultural substrate. However, [...] Read more.
Commercial forest plantations in Chile are dominated by pine (Pinus radiata) and eucalyptus (Eucalyptus globulus). Tree bark is the main by-product of the forestry industry and has low value, but great potential for use as an agricultural substrate. However, the direct use of bark fibers may cause plant phytotoxicity due to the presence of polyphenolic and other compounds. This study aims to evaluate the physicochemical properties of E. globulus and P. radiata bark after water extraction treatments. The phytotoxicity of the resulting extracted bark alone and that mixed with commercial substrates (coconut fiber, moss, peat, and composted pine) at different ratios (25 to 75 wt%) were assessed using the Munoo-Liisa vitality index (MLVI) test. For all treatments, the seed germination and growth of radish (Raphanus sativus) and Chinese cabbage (Brassica rapa) species were evaluated and compared to a commercial growing medium (peat) as a control. The optimal mixture for seed growth was determined to be 75% extracted E. globulus bark fiber and 25% commercial substrates such as peat (P), coconut fiber (C), moss (M), and composted pine (CP), as indicated by the MLVI and germination results. Two phytostimulant products, chitosan and alginate-encapsulated fulvic acid, were added to the best substrate mixture, with the purpose of improving their performance. Encapsulated fulvic acid at 0.1% w/v was effective in promoting plant growth, while chitosan at all of the concentrations studied was effective only for mixture 75E-25CP. The mixture of E. globulus fiber and commercial substrates, containing a high proportion of water-extracted fiber (75%), shows the potential to be used in the growth of horticultural crops and in the plant nursery industry. Full article
Show Figures

Graphical abstract

Back to TopTop