Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = HOP–graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 7071 KB  
Review
Electrical Properties of Composite Materials: A Comprehensive Review
by Thomaz Jacintho Lopes, Ary Machado de Azevedo, Sergio Neves Monteiro and Fernando Manuel Araujo-Moreira
J. Compos. Sci. 2025, 9(8), 438; https://doi.org/10.3390/jcs9080438 - 15 Aug 2025
Viewed by 712
Abstract
Conductive composites are a flexible class of engineered materials that combine conductive fillers with an insulating matrix—usually made of ceramic, polymeric, or a hybrid material—to customize a system’s electrical performance. By providing tunable electrical properties in addition to benefits like low density, mechanical [...] Read more.
Conductive composites are a flexible class of engineered materials that combine conductive fillers with an insulating matrix—usually made of ceramic, polymeric, or a hybrid material—to customize a system’s electrical performance. By providing tunable electrical properties in addition to benefits like low density, mechanical flexibility, and processability, these materials are intended to fill the gap between conventional insulators and conductors. The increasing need for advanced technologies, such as energy storage devices, sensors, flexible electronics, and biomedical interfaces, has significantly accelerated their development. The electrical characteristics of composite materials, including metallic, ceramic, polymeric, and nanostructured systems, are thoroughly examined in this review. The impact of various reinforcement phases—such as ceramic fillers, carbon-based nanomaterials, and metallic nanoparticles—on the electrical conductivity and dielectric behavior of composites is highlighted. In addition to conduction models like correlated barrier hopping and Debye relaxation, the study investigates mechanisms like percolation thresholds, interfacial polarization, and electron/hole mobility. Because of the creation of conductive pathways and improved charge transport, developments in nanocomposite engineering, especially with regard to graphene derivatives and silver nanoparticles, have shown notable improvements in electrical performance. This work covers the theoretical underpinnings and physical principles of conductivity and permittivity in composites, as well as experimental approaches, characterization methods (such as SEM, AFM, and impedance spectroscopy), and real-world applications in fields like biomedical devices, sensors, energy storage, and electronics. This review provides important insights for researchers who want to create and modify multifunctional composite materials with improved electrical properties by bridging basic theory with technological applications. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

19 pages, 6934 KB  
Article
Atomistic Study on the Mechanical Properties of HOP–Graphene Under Variable Strain, Temperature, and Defect Conditions
by Qing Peng, Jiale Li, Xintian Cai, Gen Chen, Zeyu Huang, Lihang Zheng, Hongyang Li, Xiao-Jia Chen and Zhongwei Hu
Nanomaterials 2025, 15(1), 31; https://doi.org/10.3390/nano15010031 - 27 Dec 2024
Cited by 4 | Viewed by 1043
Abstract
HOP–graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP–graphene, utilizing molecular [...] Read more.
HOP–graphene is a graphene structural derivative consisting of 5-, 6-, and 8-membered carbon rings with distinctive electrical properties. This paper presents a systematic investigation of the effects of varying sizes, strain rates, temperatures, and defects on the mechanical properties of HOP–graphene, utilizing molecular dynamics simulations. The results revealed that Young’s modulus of HOP–graphene in the armchair direction is 21.5% higher than that in the zigzag direction, indicating that it exhibits greater rigidity in the former direction. The reliability of the tensile simulations was contingent upon the size and strain rate. An increase in temperature from 100 K to 900 K resulted in a decrease in Young’s modulus by 7.8% and 2.9% for stretching along the armchair and zigzag directions, respectively. An increase in the concentration of introduced void defects from 0% to 3% resulted in a decrease in Young’s modulus by 24.7% and 23.1% for stretching along the armchair and zigzag directions, respectively. An increase in the length of rectangular crack defects from 0 nm to 4 nm resulted in a decrease in Young’s modulus for stretching along the armchair and zigzag directions by 6.7% and 5.7%, respectively. Similarly, an increase in the diameter of the circular hole defect from 0 nm to 4 nm resulted in a decrease in Young’s modulus along both the armchair and zigzag directions, with a corresponding reduction of 11.0% and 10.4%, respectively. At the late stage of tensile fracture along the zigzag direction, HOP–graphene undergoes a transformation to an amorphous state under tensile stress. Our results might contribute to a more comprehensive understanding of the mechanical properties of HOP–graphene under different test conditions, helping to land it in potential practical applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

11 pages, 1555 KB  
Article
A Comparative Analysis of the Electrical Properties of Silicone Rubber Composites with Graphene and Unwashed Magnetite
by Iosif Malaescu, Paula Sfirloaga, Octavian M. Bunoiu and Catalin N. Marin
Materials 2024, 17(23), 6006; https://doi.org/10.3390/ma17236006 - 8 Dec 2024
Cited by 2 | Viewed by 888
Abstract
Three elastomer samples were prepared using GS530SP01K1 silicone rubber (ProChima). The samples included pure silicone rubber (SR), a silicone rubber-graphene composite (SR-GR), and a silicone rubber-magnetite composite (SR-Fe3O4). The magnetite was synthesized via chemical precipitation but was not washed [...] Read more.
Three elastomer samples were prepared using GS530SP01K1 silicone rubber (ProChima). The samples included pure silicone rubber (SR), a silicone rubber-graphene composite (SR-GR), and a silicone rubber-magnetite composite (SR-Fe3O4). The magnetite was synthesized via chemical precipitation but was not washed to remove residual ions. The dielectric response and electrical conductivity of these samples were analyzed across a frequency range of 500 Hz to 2 MHz. The analysis of the complex dielectric permittivity and Cole–Cole plots indicated a mixed dielectric response, combining dipolar behavior and charge carrier hopping. Despite this mixed response, electrical conductivity followed Jonscher’s power law, with the exponent values (0.5 < n < 0.9) confirming the dominance of electron hopping over dipolar behavior in SR-GR and SR-Fe3O4 samples. The SR-Fe3O4 sample demonstrated higher dielectric permittivity and electrical conductivity than SR-GR, even though graphene is inherently more conductive than magnetite. This discrepancy is likely due to the presence of residual ions on the magnetite surface from the chemical precipitation process as the magnetite was only decanted and dried without washing. These findings suggest that the ionic residue significantly influences the dielectric and conductive properties of the composite. Full article
Show Figures

Figure 1

15 pages, 3323 KB  
Article
Chemistry of Reduced Graphene Oxide: Implications for the Electrophysical Properties of Segregated Graphene–Polymer Composites
by Maxim K. Rabchinskii, Kseniya A. Shiyanova, Maria Brzhezinskaya, Maksim V. Gudkov, Sviatoslav D. Saveliev, Dina Yu. Stolyarova, Mikhail K. Torkunov, Ratibor G. Chumakov, Artem Yu. Vdovichenko, Polina D. Cherviakova, Nikolai I. Novosadov, Diana Z. Nguen, Natalia G. Ryvkina, Alexander V. Shvidchenko, Nikita D. Prasolov and Valery P. Melnikov
Nanomaterials 2024, 14(20), 1664; https://doi.org/10.3390/nano14201664 - 16 Oct 2024
Cited by 2 | Viewed by 1730
Abstract
Conductive polymer composites (CPCs) with nanocarbon fillers are at the high end of modern materials science, advancing current electronic applications. Herein, we establish the interplay between the chemistry and electrophysical properties of reduced graphene oxide (rGO), separately and as a filler for CPCs [...] Read more.
Conductive polymer composites (CPCs) with nanocarbon fillers are at the high end of modern materials science, advancing current electronic applications. Herein, we establish the interplay between the chemistry and electrophysical properties of reduced graphene oxide (rGO), separately and as a filler for CPCs with the segregated structure conferred by the chemical composition of the initial graphene oxide (GO). A set of experimental methods, namely X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy, van der Paw and temperature-dependent sheet resistance measurements, along with dielectric spectroscopy, are employed to thoroughly examine the derived materials. The alterations in the composition of oxygen groups along with their beneficial effect on nitrogen doping upon GO reduction by hydrazine are tracked with the help of XPS. The slight defectiveness of the graphene network is found to boost the conductivity of the material due to facilitating the impact of the nitrogen lone-pair electrons in charge transport. In turn, a sharp drop in material conductivity is indicated upon further disruption of the π-conjugated network, predominantly governing the charge transport. Particularly, the transition from the Mott variable hopping transport mechanism to the Efros–Shklovsky one is signified. Finally, the impact of rGO chemistry and physics on the electrophysical properties of CPCs with the segregated structure is evaluated. Taken together, our results give a hint at how GO chemistry manifests the properties of rGO and the CPC derived from it, offering compelling opportunities for their practical applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

10 pages, 1356 KB  
Article
Entropy and Negative Specific Heat of Doped Graphene: Topological Phase Transitions and Nernst’s Theorem Revisited
by L. Palma-Chilla, Juan A. Lazzús and J. C. Flores
Entropy 2024, 26(9), 771; https://doi.org/10.3390/e26090771 - 10 Sep 2024
Cited by 3 | Viewed by 1297
Abstract
This study explores the thermodynamic properties of doped graphene using an adapted electronic spectrum. We employed the one-electron tight-binding model to describe the hexagonal lattice structure. The dispersion relation for graphene is expressed in terms of the hopping energies using a compositional parameter [...] Read more.
This study explores the thermodynamic properties of doped graphene using an adapted electronic spectrum. We employed the one-electron tight-binding model to describe the hexagonal lattice structure. The dispersion relation for graphene is expressed in terms of the hopping energies using a compositional parameter that characterizes the different dopant atoms in the lattice. The focus of the investigation is on the impact of the compositions, specifically the presence of dopant atoms, on the energy spectrum, entropy, temperature, and specific heat of graphene. The numerical and analytical results reveal distinct thermodynamic behaviors influenced by the dopant composition, including topological transitions, inflection points in entropy, and specific heat divergences. In addition, the use of Boltzmann entropy and the revision of Nernst’s theorem for doped graphene are introduced as novel aspects. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

26 pages, 10395 KB  
Article
Hybrid Nanocomposites Based on Poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone): Synthesis, Structure and Properties
by Svetlana G. Kiseleva, Galina N. Bondarenko, Andrey V. Orlov, Dmitriy G. Muratov, Vladimir V. Kozlov, Andrey A. Vasilev and Galina P. Karpacheva
Polymers 2024, 16(13), 1832; https://doi.org/10.3390/polym16131832 - 27 Jun 2024
Cited by 2 | Viewed by 1423
Abstract
Hybrid nanocomposites based on poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone) (PDACB) in salt form and graphene oxide (GO) have been obtained for the first time, and the significant influence of the preparation method on the composition and structure of nanocomposites and their functional properties has been demonstrated. Nanocomposites [...] Read more.
Hybrid nanocomposites based on poly(3,6-dianiline-2,5-dichloro-1,4-benzoquinone) (PDACB) in salt form and graphene oxide (GO) have been obtained for the first time, and the significant influence of the preparation method on the composition and structure of nanocomposites and their functional properties has been demonstrated. Nanocomposites were prepared in three ways: via ultrasonic mixing of PDACB and GO; via in situ oxidative polymerization of 3,6-dianiline-2,5-dichloro-1,4-benzoquinone (DACB) in the presence of GO; and by heating a suspension of previously prepared PDACB and GO in DMF with the removal of the solvent. The results of the study of the composition, chemical structure, morphology, thermal stability and electrical properties of nanocomposites obtained via various methods are presented. Nanocomposites obtained by mixing the components in an ultrasonic field demonstrated strong intermolecular interactions between PDACB and GO both due to the formation of hydrogen bonds and π-stacking, as well as through electrostatic interactions. Under oxidative polymerization of DACB in the presence of GO, the latter participated in the oxidative process, being partially reduced. At the same time, a PDACB polymer film was formed on the surface of the GO. Prolonged heating for 4 h at 85 °C of a suspension of PDACB and GO in DMF led to the dedoping of PDACB with the transition of the polymer to the base non-conductive form and the reduction of GO. Regardless of the preparation method, all nanocomposites showed an increase in thermal stability compared to PDACB. All nanocomposites were characterized by a hopping mechanism of conductivity. Direct current (dc) conductivity σdc values varied within two orders of magnitude depending on the preparation conditions. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Graphical abstract

13 pages, 3604 KB  
Article
Controlled Memristic Behavior of Metal-Organic Framework as a Promising Memory Device
by Lei Li
Nanomaterials 2023, 13(20), 2736; https://doi.org/10.3390/nano13202736 - 10 Oct 2023
Cited by 2 | Viewed by 1771
Abstract
Metal-organic frameworks (MOFs) have attracted considerable interests for sensing, electrochemical, and catalytic applications. Most significantly, MOFs with highly accessible sites on their surface have promising potential for applications in high-performance computing architecture. In this paper, Mg-MOF-74 (a MOF built of Mg(II) ions linked [...] Read more.
Metal-organic frameworks (MOFs) have attracted considerable interests for sensing, electrochemical, and catalytic applications. Most significantly, MOFs with highly accessible sites on their surface have promising potential for applications in high-performance computing architecture. In this paper, Mg-MOF-74 (a MOF built of Mg(II) ions linked by 2,5-dioxido-1,4-benzenedicarboxylate (DOBDC) ligands) and graphene oxide composites (Mg-MOF-74@GO) were first used as an active layer to fabricate ternary memory devices. A comprehensive investigation of the multi-bit data storage performance for Mg-MOF-74@GO composites was discussed and summarized. Moreover, the structure change of Mg-MOF-74@GO after introducing GO was thoroughly studied. The as-fabricated resistive random access memory (RRAM) devices exhibit a ternary memristic behavior with low SET voltage, an RHRS/RIRS/RLRS ratio of 103:102:1, superior retention (>104 s), and reliability performance (>102 cycles). Herein, Mg-MOF-74@GO composite films in constructing memory devices were presented with GO-mediated ternary memristic properties, where the distinct resistance states were controlled to achieve multi-bit data storage. The hydrogen bonding system and defects of GO adsorbed in Mg-MOF-74 are the reason for the ternary memristic behavior. The charge trapping assisted hopping is proposed as the operation mechanism, which is further confirmed by XRD and Raman spectra. The GO-mediated Mg-MOF-74 memory device exhibits potential applications in ultrahigh-density information storage systems and in-memory computing paradigms. Full article
Show Figures

Figure 1

13 pages, 14611 KB  
Article
Correlating Disorder Microstructure and Magnetotransport of Carbon Nanowalls
by Mijaela Acosta Gentoiu, Rafael García Gutiérrez, José Joaquín Alvarado Pulido, Javier Montaño Peraza, Marius Volmer, Sorin Vizireanu, Stefan Antohe, Gheorghe Dinescu and Ricardo Alberto Rodriguez-Carvajal
Appl. Sci. 2023, 13(4), 2476; https://doi.org/10.3390/app13042476 - 14 Feb 2023
Cited by 4 | Viewed by 1876
Abstract
The carbon nanowalls (CNWs) grown by Plasma-Enhanced CVD reveal differences in the magnetotransport properties depending on the synthesis parameters. In this paper, we report the influence of the deposition temperature, which produces variations of the disorder microstructure of the CNWs. Relative low disorder [...] Read more.
The carbon nanowalls (CNWs) grown by Plasma-Enhanced CVD reveal differences in the magnetotransport properties depending on the synthesis parameters. In this paper, we report the influence of the deposition temperature, which produces variations of the disorder microstructure of the CNWs. Relative low disorder leads to the weak localization with the transition to weak antilocalization. Higher disorder generates positive Hopping mechanism in low field with a crossover to a diffusion transport by graphene nanocrystallites. The samples reveal a similitude of the isoline density of the MR at a low temperature (<50 K), explained in the context of the magnetization. This effect is independent of the number of defects. We can achieve a desirable amount of control over the MT properties changing the CNWs’ microstructure. Full article
Show Figures

Figure 1

10 pages, 666 KB  
Article
Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation
by Hwa Yong Lee, Mohd Musaib Haidari, Eun Hee Kee, Jin Sik Choi, Bae Ho Park, Eleanor E. B. Campbell and Sung Ho Jhang
Nanomaterials 2022, 12(16), 2845; https://doi.org/10.3390/nano12162845 - 18 Aug 2022
Cited by 3 | Viewed by 1987
Abstract
Graphene oxides with different degrees of oxidation are prepared by controlling UV irradiation on graphene, and the charge transport and the evolution of the transport gap are investigated according to the extent of oxidation. With increasing oxygenous defect density nD, a [...] Read more.
Graphene oxides with different degrees of oxidation are prepared by controlling UV irradiation on graphene, and the charge transport and the evolution of the transport gap are investigated according to the extent of oxidation. With increasing oxygenous defect density nD, a transition from ballistic to diffusive conduction occurs at nD1012 cm2 and the transport gap grows in proportion to nD. Considering the potential fluctuation related to the eh puddle, the bandgap of graphene oxide is deduced to be Eg30nD(1012cm2) meV. The temperature dependence of conductivity showed metal–insulator transitions at nD0.3×1012 cm2, consistent with Ioffe–Regel criterion. For graphene oxides at nD4.9×1012 cm2, analysis indicated charge transport occurred via 2D variable range hopping conduction between localized sp2 domain. Our work elucidates the transport mechanism at different extents of oxidation and supports the possibility of adjusting the bandgap with oxygen content. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Show Figures

Figure 1

15 pages, 28942 KB  
Article
Cost-Effective Calculation of Collective Electronic Excitations in Graphite Intercalated Compounds
by Pengfei Suo, Li Mao, Jing Shi and Hongxing Xu
Nanomaterials 2022, 12(10), 1746; https://doi.org/10.3390/nano12101746 - 20 May 2022
Cited by 2 | Viewed by 2107
Abstract
Graphite/graphene intercalation compounds with good and improving electrical transport properties, optical properties, magnetic properties and even superconductivity are widely used in battery, capacitors and so on. Computational simulation helps with predicting important properties and exploring unknown functions, while it is restricted by limited [...] Read more.
Graphite/graphene intercalation compounds with good and improving electrical transport properties, optical properties, magnetic properties and even superconductivity are widely used in battery, capacitors and so on. Computational simulation helps with predicting important properties and exploring unknown functions, while it is restricted by limited computing resources and insufficient precision. Here, we present a cost-effective study on graphite/graphene intercalation compounds properties with sufficient precision. The calculation of electronic collective excitations in AA-stacking graphite based on the tight-binding model within the random phase approximation framework agrees quite well with previous experimental and calculation work, such as effects of doping level, interlayer distance, and interlayer hopping on 2D π plasmon and 3D intraband plasmon modes. This cost-effective simulation method can be extended to other intercalation compounds with unlimited intercalation species. Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Show Figures

Figure 1

9 pages, 1587 KB  
Article
Hot-Pressed Two-Dimensional Amorphous Metals and Their Electronic Properties
by Jieying Liu, Jian Tang, Jiaojiao Zhao, Yanchong Zhao, Cheng Shen, Mengzhou Liao, Shuopei Wang, Jinpeng Tian, Yanbang Chu, Jiawei Li, Zheng Wei, Gen Long, Wei Yang, Rong Yang, Na Li, Dongxia Shi and Guangyu Zhang
Crystals 2022, 12(5), 616; https://doi.org/10.3390/cryst12050616 - 26 Apr 2022
Cited by 1 | Viewed by 3177
Abstract
As an emerging research field, two-dimensional (2D) metals have been the subject of increasing research efforts in recent years due to their potential applications. However, unlike typical 2D layered materials, such as graphene, which can be exfoliated from their bulk parent compounds, it [...] Read more.
As an emerging research field, two-dimensional (2D) metals have been the subject of increasing research efforts in recent years due to their potential applications. However, unlike typical 2D layered materials, such as graphene, which can be exfoliated from their bulk parent compounds, it is hardly possible to produce 2D metals through exfoliation techniques due to the absence of Van der Waals gaps. Indeed, the lack of effective material preparation methods severely limits the development of this research field. Here, we report a PDMS-assisted hot-pressing method in glovebox to obtain ultraflat nanometer-thick 2D metals/metal oxide amorphous films of various low-melting-point metals and alloys, e.g., gallium (Ga), indium (In), tin (Sn), and Ga0.87Ag0.13 alloy. The valence states extracted from X-ray photoelectron spectroscopy (XPS) indicate that the ratios of oxidation to metal in our 2D films vary among metals. The temperature-dependent electronic measurements show that the transport behavior of 2D metal/metal oxide films conform with the 2D Mott’s variable range hopping (VRH) model. Our experiments provide a feasible and effective approach to obtain various 2D metals. Full article
(This article belongs to the Special Issue 2D Crystalline Nanomaterials)
Show Figures

Figure 1

19 pages, 4114 KB  
Article
A Blueprint for the Synthesis and Characterization of Thiolated Graphene
by Maxim K. Rabchinskii, Victor V. Sysoev, Sergei A. Ryzhkov, Ilya A. Eliseyev, Dina Yu. Stolyarova, Grigorii A. Antonov, Nikolai S. Struchkov, Maria Brzhezinskaya, Demid A. Kirilenko, Sergei I. Pavlov, Mihail E. Palenov, Maxim V. Mishin, Olga E. Kvashenkina, Pavel G. Gabdullin, Alexey S. Varezhnikov, Maksim A. Solomatin and Pavel N. Brunkov
Nanomaterials 2022, 12(1), 45; https://doi.org/10.3390/nano12010045 - 24 Dec 2021
Cited by 11 | Viewed by 3508
Abstract
Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the [...] Read more.
Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials. Full article
Show Figures

Graphical abstract

17 pages, 6491 KB  
Article
Electronic Transport Mechanisms Correlated to Structural Properties of a Reduced Graphene Oxide Sponge
by Nicola Pinto, Benjamin McNaughton, Marco Minicucci, Milorad V. Milošević and Andrea Perali
Nanomaterials 2021, 11(10), 2503; https://doi.org/10.3390/nano11102503 - 26 Sep 2021
Cited by 1 | Viewed by 2812
Abstract
We report morpho-structural properties and charge conduction mechanisms of a foamy “graphene sponge”, having a density as low as ≈0.07 kg/m3 and a carbon to oxygen ratio C:O ≃ 13:1. The spongy texture analysed by scanning electron microscopy is made of irregularly-shaped [...] Read more.
We report morpho-structural properties and charge conduction mechanisms of a foamy “graphene sponge”, having a density as low as ≈0.07 kg/m3 and a carbon to oxygen ratio C:O ≃ 13:1. The spongy texture analysed by scanning electron microscopy is made of irregularly-shaped millimetres-sized small flakes, containing small crystallites with a typical size of ≃16.3 nm. A defect density as high as ≃2.6 × 1011 cm2 has been estimated by the Raman intensity of D and G peaks, dominating the spectrum from room temperature down to ≃153 K. Despite the high C:O ratio, the graphene sponge exhibits an insulating electrical behavior, with a raise of the resistance value at ≃6 K up to 5 orders of magnitude with respect to the room temperature value. A variable range hopping (VRH) conduction, with a strong 2D character, dominates the charge carriers transport, from 300 K down to 20 K. At T < 20 K, graphene sponge resistance tends to saturate, suggesting a temperature-independent quantum tunnelling. The 2D-VRH conduction originates from structural disorder and is consistent with hopping of charge carriers between sp2 defects in the plane, where sp3 clusters related to oxygen functional groups act as potential barriers. Full article
(This article belongs to the Special Issue Carbon-Based Materials: Growth, Characterization, and Applications)
Show Figures

Figure 1

12 pages, 4778 KB  
Article
Easily Processable, Highly Transparent and Conducting Thiol-Functionalized Reduced Graphene Oxides Langmuir-Blodgett Films
by Ki-Wan Jeon
Molecules 2021, 26(9), 2686; https://doi.org/10.3390/molecules26092686 - 4 May 2021
Cited by 6 | Viewed by 2413
Abstract
We report synthesis and fabrication of highly thionated reduced graphene oxide and its Langmuir-Blodgett (LB) film without an LB trough. As the synthesized product, mercapto reduced graphene oxide (mRGO) contains high thiol content estimated from XPS, corresponding to a surface coverage of 1.3 [...] Read more.
We report synthesis and fabrication of highly thionated reduced graphene oxide and its Langmuir-Blodgett (LB) film without an LB trough. As the synthesized product, mercapto reduced graphene oxide (mRGO) contains high thiol content estimated from XPS, corresponding to a surface coverage of 1.3 SH/nm2. The mRGO LB film shows two electronic transport properties, following Efros-Shklovskii variable-range hopping (VRH) and Mott VRH at low and high temperature, respectively. Optical and band gap of the LB film was estimated from Tauc plot and semi-logarithmic-scale plot of sheet resistance versus temperature to be 0.6 and 0.1 eV, respectively. Additionally, the sheet resistance of the mRGO LB film depends on the quantity of the thiol functional group with the same transmittance at 550 nm (500 kΩ for mRGO, 1.3 MΩ for tRGO with 92% transmittance). Full article
Show Figures

Figure 1

20 pages, 2366 KB  
Article
Atomistic Band-Structure Computation for Investigating Coulomb Dephasing and Impurity Scattering Rates of Electrons in Graphene
by Thi-Nga Do, Danhong Huang, Po-Hsin Shih, Hsin Lin and Godfrey Gumbs
Nanomaterials 2021, 11(5), 1194; https://doi.org/10.3390/nano11051194 - 1 May 2021
Cited by 6 | Viewed by 2809
Abstract
In this paper, by introducing a generalized quantum-kinetic model which is coupled self-consistently with Maxwell and Boltzmann transport equations, we elucidate the significance of using input from first-principles band-structure computations for an accurate description of ultra-fast dephasing and scattering dynamics of electrons in [...] Read more.
In this paper, by introducing a generalized quantum-kinetic model which is coupled self-consistently with Maxwell and Boltzmann transport equations, we elucidate the significance of using input from first-principles band-structure computations for an accurate description of ultra-fast dephasing and scattering dynamics of electrons in graphene. In particular, we start with the tight-binding model (TBM) for calculating band structures of solid covalent crystals based on localized Wannier orbital functions, where the employed hopping integrals in TBM have been parameterized for various covalent bonds. After that, the general TBM formalism has been applied to graphene to obtain both band structures and wave functions of electrons beyond the regime of effective low-energy theory. As a specific example, these calculated eigenvalues and eigen vectors have been further utilized to compute the Bloch-function form factors and intrinsic Coulomb diagonal-dephasing rates for induced optical coherence of electron-hole pairs in spectral and polarization functions, as well as the energy-relaxation time from extrinsic impurity scattering of electrons for non-equilibrium occupation in band transport. Full article
(This article belongs to the Special Issue Graphene for Electronics)
Show Figures

Figure 1

Back to TopTop