Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = HSPG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2571 KB  
Article
Exploratory Analysis of Differentially Expressed Genes for Distinguishing Adipose-Derived Mesenchymal Stroma/Stem Cells from Fibroblasts
by Masami Kanawa, Katsumi Fujimoto, Tania Saskianti, Ayumu Nakashima and Takeshi Kawamoto
Appl. Sci. 2025, 15(18), 9881; https://doi.org/10.3390/app15189881 - 9 Sep 2025
Viewed by 315
Abstract
Adipose-derived mesenchymal stromal/stem cells (AT-MSCs) can be typically isolated from adipose tissue using a minimally invasive procedure. However, since AT-MSCs are usually obtained from subcutaneous tissue, there is a risk of contamination with fibroblasts (FBs), which can reduce the differentiation potential of AT-MSCs. [...] Read more.
Adipose-derived mesenchymal stromal/stem cells (AT-MSCs) can be typically isolated from adipose tissue using a minimally invasive procedure. However, since AT-MSCs are usually obtained from subcutaneous tissue, there is a risk of contamination with fibroblasts (FBs), which can reduce the differentiation potential of AT-MSCs. To avoid this contamination, it is crucial to identify specific markers to effectively distinguish AT-MSCs from FBs. Analysis of microarray data obtained from three studies (GSE9451, GSE66084, GSE94667, and GSE38947) revealed 123 genes expressed at levels more than 1.5-fold higher in AT-MSCs compared to FBs. Using STRING, a protein-protein interaction (PPI) network consisting of 80 nodes and 197 edges was identified within the 123 genes. Further investigation using Molecular Complex Detection in Cytoscape identified a module of 12 genes: COL3A1, FBN1, COL4A1, COL5A2, POSTN, CTGF, SPARC, HSPG2, FSTL1, LAMA2, LAMC1, COL16A1. Gene Ontology analysis revealed that these genes were enriched in extracellular region (GO: 0005576). Additionally, these 12 genes corresponded to the top 12 of the 15 hub genes calculated using the Maximal Clique Centrality algorithm. The results of this study suggest that these 12 genes may serve as markers for distinguishing AT-MSCs from FBs, offering potential applications in regenerative medicine. Full article
Show Figures

Figure 1

31 pages, 23068 KB  
Article
Heparan Sulfate Proteoglycans as Potential Markers for In Vitro Human Neural Lineage Specification
by Chieh Yu, Duy L. B. Nguyen, Martina Gyimesi, Ian W. Peall, Son H. Pham, Lyn R. Griffiths, Rachel K. Okolicsanyi and Larisa M. Haupt
Cells 2025, 14(15), 1158; https://doi.org/10.3390/cells14151158 - 26 Jul 2025
Viewed by 991
Abstract
Heparan sulfate proteoglycans (HSPGs) within the neuronal niche are expressed during brain development, contributing to multiple aspects of neurogenesis, yet their roles in glial lineage commitment remain elusive. This study utilised three human cell models expanded under basal culture conditions followed by media-induced [...] Read more.
Heparan sulfate proteoglycans (HSPGs) within the neuronal niche are expressed during brain development, contributing to multiple aspects of neurogenesis, yet their roles in glial lineage commitment remain elusive. This study utilised three human cell models expanded under basal culture conditions followed by media-induced lineage induction to identify a reproducible and robust model of gliogenesis. SH-SY5Y human neuroblastoma cells (neuronal control), ReNcell CX human neural progenitor cells (astrocyte inductive) and ReNcell VM human neural progenitor (mixed neural induction) models were examined. The cultures were characterised during basal and inductive states via Q-PCR, Western Blotting, immunocytochemistry (ICC) and calcium signalling activity analyses. While the ReNcell lines did not produce fully mature or homogeneous astrocyte cultures, the ReNcell CX cultures most closely resembled an astrocytic phenotype with ReNcell VM cells treated with platelet-derived growth factor (PDGF) biased toward an oligodendrocyte lineage. The glycated variant of surface-bound glypican-2 (GPC2) was found to be associated with lineage commitment, with GPC6 and 6-O HS sulfation upregulated in astrocyte lineage cultures. Syndecan-3 (SDC3) emerged as a lineage-sensitive proteoglycan, with its cytoplasmic domain enriched in progenitor-like states and lost upon differentiation, supporting a role in maintaining neural plasticity. Conversely, the persistence of transmembrane-bound SDC3 in astrocyte cultures suggest continued involvement in extracellular signalling and proteoglycan secretion, demonstrated by increased membrane-bound HS aggregates. This data supports HSPGs and HS GAGs as human neural lineage differentiation and specification markers that may enable better isolation of human neural lineage-specific cell populations and improve our understanding of human neurogenesis. Full article
(This article belongs to the Collection Feature Papers in 'Cells of the Nervous System' Section)
Show Figures

Graphical abstract

12 pages, 1617 KB  
Article
Genomic Analysis of Reproductive Trait Divergence in Duroc and Yorkshire Pigs: A Comparison of Mixed Models and Selective Sweep Detection
by Changyi Chen, Yu He, Juan Ke, Xiaoran Zhang, Junwen Fei, Boxing Sun, Hao Sun and Chunyan Bai
Vet. Sci. 2025, 12(7), 657; https://doi.org/10.3390/vetsci12070657 - 11 Jul 2025
Viewed by 652
Abstract
This study aimed to investigate population genetic differences related to reproductive traits between Duroc and Yorkshire (Dutch Large White) pigs using two approaches: linear mixed models that dissect additive and dominant effects, and selective sweep analysis. (1) Methods: Genome-wide single-nucleotide polymorphism (SNP) data [...] Read more.
This study aimed to investigate population genetic differences related to reproductive traits between Duroc and Yorkshire (Dutch Large White) pigs using two approaches: linear mixed models that dissect additive and dominant effects, and selective sweep analysis. (1) Methods: Genome-wide single-nucleotide polymorphism (SNP) data of 3917 Duroc and 3217 Yorkshire pigs were analyzed. The first principal component (PC1) was used as a simulated phenotype to capture population-level variance. Additive and dominant genetic effects were partitioned and evaluated by using the combination of the linear mixed models (LMM) and ADDO’s algorithm (LMM + ADDO). In parallel, selective sweep signals were detected using fixation index (FST) and nucleotide diversity (θπ) analyses. A comparative assessment was then conducted between the LMM + ADDO and the selective sweep analysis results. Significant loci were annotated using quantitative trait loci (QTL) databases and the Ensembl genome browser. (2) Results: There are 39040 SNPs retained after quality control. Using the LMM + ADDO framework with PC1 as a simulated phenotype, a total of 632 significant SNPs and 184 candidate genes were identified. Notably, 587 SNPs and 171 genes were uniquely detected by the LMM + ADDO method and not among loci detected by the top 5% of FST and θπ values. Key candidate genes associated with litter size included HSPG2, KAT6B, SAMD8, and LRMDA, while DLGAP1, MYOM1, and VTI1A were associated with teat number traits. (3) Conclusions: This study demonstrates the power of integrating additive and dominant effect modeling with population genetics approaches for the detection of genomic regions under selection. The findings provide novel insights into the genetic architecture of reproductive traits in pigs and have practical implications for understanding the inheritance of complex traits. Full article
(This article belongs to the Special Issue Future Perspectives in Pig Reproductive Biotechnology)
Show Figures

Figure 1

21 pages, 1482 KB  
Article
Comprehensive Integrated Analyses of Proteins and Metabolites in Equine Seminal Plasma (Horses and Donkeys)
by Xin Wen, Gerelchimeg Bou, Qianqian He, Qi Liu, Minna Yi and Hong Ren
Proteomes 2025, 13(3), 33; https://doi.org/10.3390/proteomes13030033 - 4 Jul 2025
Viewed by 861
Abstract
Background: The reproductive ability of equine species is a critical component of equine breeding programs, with sperm quality serving as a primary determinant of reproductive success. In this study, we perform an integrative analysis of proteomics and metabolomics in seminal plasma to identify [...] Read more.
Background: The reproductive ability of equine species is a critical component of equine breeding programs, with sperm quality serving as a primary determinant of reproductive success. In this study, we perform an integrative analysis of proteomics and metabolomics in seminal plasma to identify proteins and metabolites associated with sperm quality and reproductive ability in equine species. Methods: We utilized the CEROS instrument to assess the morphology and motility of sperm samples from three horses and three donkeys. Additionally, we statistically analyzed the mating frequency and pregnancy rates in both species. Meanwhile, the 4D-DIA high-throughput proteomic and metabolomic profiling of seminal plasma samples from horses and donkeys revealed a complex landscape of proteins and metabolites. Results: Our findings reveal a certain degree of correlation between seminal plasma proteins and metabolites and sperm quality, as well as overall fertility. Notably, we found that the proteins B3GAT3, XYLT2, CHST14, HS2ST1, GLCE, and HSPG2 in the glycosaminoglycan biosynthesis signaling pathway; the metabolites D-glucose, 4-phosphopantetheine, and 4-hydroxyphenylpyruvic acid in the tyrosine metabolism, starch, and source metabolisms; and pantothenate CoA biosynthesis metabolism present unique characteristics in the seminal plasma of equine species. Conclusions: This comprehensive approach provides new insights into the molecular mechanisms underlying sperm quality and has identified potential proteins and metabolites that could be used to indicate reproduction ability. The findings from this study could be instrumental in developing novel strategies to enhance equine breeding practices and reproductive management. Future research will focus on exploring their potential for clinical application in the equine industry. Full article
(This article belongs to the Section Animal Proteomics)
Show Figures

Figure 1

12 pages, 1044 KB  
Article
Endplate Lesions of the Lumbar Spine: Biochemistry and Genetics
by Alessandra Colombini, Vincenzo Raffo, Angela Elvira Covone, Tito Bassani, Domenico Coviello, Sabina Cauci, Ludovica Pallotta and Marco Brayda-Bruno
Genes 2025, 16(7), 738; https://doi.org/10.3390/genes16070738 - 26 Jun 2025
Viewed by 647
Abstract
Background/Objectives: Endplate lesions of the lumbar spine are often asymptomatic and frequently observed incidentally by radiological assessment. Variants in the vitamin D receptor gene (VDR) and an increase in some biochemical markers related to the osteo-cartilaginous metabolism were found in patients [...] Read more.
Background/Objectives: Endplate lesions of the lumbar spine are often asymptomatic and frequently observed incidentally by radiological assessment. Variants in the vitamin D receptor gene (VDR) and an increase in some biochemical markers related to the osteo-cartilaginous metabolism were found in patients with endplate lesions. The aim of this study was to identify biochemical and genetic markers putatively associated with the presence of endplate lesions of the lumbar spine. Methods: Quantification of circulating bone remodeling proteins was obtained from 10 patients with endplate lesions and compared with age- and sex-matched controls. Whole exome sequencing (WES) was performed on patient genomic DNA using the Novaseq 6000 platform (Illumina, San Diego, CA, USA), obtaining a median read depth of 117×–200×, with ≥98% of regions covering at least 20×. The sequencing product was aligned to the reference genome (GRCh38.p13-hg38) and analyzed with Geneyx software. Results: We observed modifications in the levels of circulating proteins involved in bone remodeling and angiogenesis. We identified variants of interest in aggrecan (ACAN), bone morphogenetic protein 4 (BMP4), cytochrome P450 family 3 subfamily A member 4 (CYP3A4), GLI family zinc finger 2 (GLI2), heparan sulfate proteoglycan 2 (HSPG2), and mesoderm posterior bHLH transcription factor 2 (MESP2). VDR polymorphism (rs2228570) was present in nine patients, with the homozygotic ones having more severe endplate lesions and higher levels of the analyzed circulating markers in comparison with heterozygotic patients. Conclusions: These data represent interesting evidence of genetic variants, particularly in VDR, and altered levels of circulating markers of bone remodeling associated with endplate lesions, which should be confirmed in a larger population. The hypothesis suggested by our results is that the endplate lesions could be the consequence of an altered ossification mechanism at the vertebral level. Full article
(This article belongs to the Special Issue Genes and Gene Polymorphisms Associated with Complex Diseases)
Show Figures

Figure 1

19 pages, 6864 KB  
Article
Co-Aggregation of Syndecan-3 with β-Amyloid Aggravates Neuroinflammation and Cognitive Impairment in 5×FAD Mice
by Fan Ye, Mingfeng Li, Min Liu, Xinghan Wu, Fan Tian, Yanju Gong, Yan Cao, Jingtai Zhang, Xueling Zhang, Chuan Qin and Ling Zhang
Int. J. Mol. Sci. 2025, 26(12), 5502; https://doi.org/10.3390/ijms26125502 - 8 Jun 2025
Cited by 1 | Viewed by 3366
Abstract
Abnormal deposition of β-amyloid (Aβ) is a core pathological feature of Alzheimer’s disease (AD). Syndecan-3 (SDC3), a type I transmembrane heparan sulfate proteoglycan (HSPG), is abnormally overexpressed in the brains of AD patients and model animals, specifically accumulating in the peri-plaque region of [...] Read more.
Abnormal deposition of β-amyloid (Aβ) is a core pathological feature of Alzheimer’s disease (AD). Syndecan-3 (SDC3), a type I transmembrane heparan sulfate proteoglycan (HSPG), is abnormally overexpressed in the brains of AD patients and model animals, specifically accumulating in the peri-plaque region of amyloid plaques. However, its regulatory mechanism in the process of Aβ deposition remains unclear. This study aims to clearly define the role of SDC3 in Aβ aggregation and neuroinflammation, two critical processes in AD pathogenesis. Specifically, we investigate how SDC3 modulates Aβ aggregation and its interaction with neuroinflammatory pathways, which may contribute to the progression of AD. By elucidating the mechanisms underlying SDC3’s involvement in these processes, we seek to provide new insights into potential therapeutic targets for AD. In this study, a 5×FAD mouse model with downregulated SDC3 expression was constructed. Behavioral assessments and synaptic function tests were performed to explore the effects of SDC3 on cognition in 5×FAD mice. Immunofluorescence co-localization technology was utilized to analyze the pathological co-deposition of SDC3 and Aβ in the hippocampus, cortex, and meningeal blood vessels. Quantitative assessments of pro-inflammatory cytokines such as Tnf-α and Cxcl10 in the brain were performed through histopathological analysis combined with qPCR. Western blotting was used to examine the phosphorylation status of STAT1/STAT3 and the expression changes of IBA1/GFAP to systematically analyze the molecular mechanisms through which SDC3 regulates AD pathology. This study revealed that SDC3 expression was significantly upregulated in the brain regions of the 5×FAD model mice and co-localized pathologically with Aβ. Cell lineage tracing analysis showed that the elevated SDC3 expression primarily originated from glial cells. Behavioral and pathological results demonstrated that downregulation of SDC3 significantly improved cognitive dysfunction in the model mice and effectively reduced the Aβ burden in the brain. Molecular mechanism studies showed that downregulation of SDC3 reduced the phosphorylation of STAT1 and STAT3, thereby inhibiting the activation of the JAK-STAT and cGAS-STING signaling pathways, reducing the activation of microglia/astrocytes and suppressing the expression of pro-inflammatory cytokines such as Tnf-α and Cxcl10. This study reveals that SDC3 co-localizes with Aβ pathology and synergistically exacerbates neuroinflammation. Knockdown of SDC3 can simultaneously reduce both Aβ deposition and the release of inflammatory factors from glial cells. Mechanistic research indicates that SDC3 drives a “glial activation–cytokine release” vicious cycle through the JAK-STAT and cGAS-STING signaling pathways. These findings suggest that SDC3 may serve as a key hub coordinating amyloid pathology and neuroinflammation in AD, providing new insights for the development of combination therapies targeting the HSPG network. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

24 pages, 6482 KB  
Article
Transmembrane Protein-184A Interacts with Syndecan-4 and Rab GTPases and Is Required to Maintain VE-Cadherin Levels
by Leanna M. Altenburg, Stephanie H. Wang, Grace O. Ciabattoni, Amelia Kennedy, Rachel L. O’Toole, Sara L. N. Farwell, M. Kathryn Iovine and Linda J. Lowe-Krentz
Cells 2025, 14(11), 833; https://doi.org/10.3390/cells14110833 - 3 Jun 2025
Viewed by 1017
Abstract
VE-cadherin (VE-cad) membrane stability and localization regulates adhesion formation and actin cytoskeleton dynamics in angiogenesis and vascular remodeling and requires the heparan sulfate proteoglycan (HSPG), Syndecan-4 (Sdc4). This study characterizes the interactions of the heparin receptor, Transmembrane protein-184A (TMEM184A), and Sdc4 in bovine [...] Read more.
VE-cadherin (VE-cad) membrane stability and localization regulates adhesion formation and actin cytoskeleton dynamics in angiogenesis and vascular remodeling and requires the heparan sulfate proteoglycan (HSPG), Syndecan-4 (Sdc4). This study characterizes the interactions of the heparin receptor, Transmembrane protein-184A (TMEM184A), and Sdc4 in bovine aortic endothelial cells (BAOECs) and the regenerating Zebrafish (ZF) caudal fin and measures the effect of siRNA TMEM184A KD (siTMEM) and TMEM184A overexpression (TMEM OE) on VE-cad levels and localization in confluent and sub-confluent cultured BAOECs. Additionally, we examined the effect of siTMEM on key Rab GTPase trafficking regulators and migrating BAOECs in scratch wound healing assays. We demonstrated that TMEM184A and Sdc4 colocalize in BAOECs and that Sdc4 OE increases colocalization in an HS chain dependent manner, while both Tmem184a and Sdc4 cooperate synergistically in ZF fin angiogenic and tissue repair. We also showed that siTMEM decreases VE-cad membrane and cytoplasmic levels, while increasing scratch wound migration rates. However, TMEM OE cells show increased vesicle formation and VE-cad trafficking and membrane recovery. These findings characterize TMEM184A-Sdc4 cooperation in angiogenesis and indicate a dual function of TMEM184A in signaling and trafficking in vascular cells that promotes VE-cad recovery and membrane localization. Full article
Show Figures

Figure 1

21 pages, 5986 KB  
Article
FAM20B Gain-of-Function Blocks the Synthesis of Glycosaminoglycan Chains of Proteoglycans and Inhibits Proliferation and Migration of Glioblastoma Cells
by Lydia Barré, Irfan Shaukat and Mohamed Ouzzine
Cells 2025, 14(10), 712; https://doi.org/10.3390/cells14100712 - 14 May 2025
Viewed by 655
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PGs) are essential regulators of many biological processes including cell differentiation, signalization, and proliferation. PGs interact mainly via their glycosaminoglycan (GAG) chains, with a large number of ligands including growth factors, enzymes, and extracellular matrix [...] Read more.
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PGs) are essential regulators of many biological processes including cell differentiation, signalization, and proliferation. PGs interact mainly via their glycosaminoglycan (GAG) chains, with a large number of ligands including growth factors, enzymes, and extracellular matrix components, thereby modulating their biological activities. HSPGs and CSPGs share a common tetrasaccharide linker region, which undergoes modifications, particularly the phosphorylation of the xylose residue by the kinase FAM20B. Here, we demonstrated that FAM20B gain-of-function decreased, in a dose dependent manner, the synthesis of both CS- and HS-attached PGs. In addition, we showed that blockage of GAG chain synthesis by FAM20B was suppressed by the mutation of aspartic acid residues D289 and D309 of the catalytic domain. Interestingly, we bring evidence that, in contrast to FAM20B, expression of the 2-phosphoxylose phosphatase XYLP increases, in a dose dependent manner, GAG chain synthesis and rescues the blockage of GAG chains synthesis induced by FAM20B. In line with previous reports, we found that FAM20B loss-of-function reduced GAG chain synthesis. Finally, we found that FAM20B inhibited proliferation and migration of glioblastoma cells, thus revealing the critical role of GAG chains of PGs in glioblastoma cell tumorigenesis. This study revealed that both gain- and loss-of-function of FAM20B led to decreased GAG chain synthesis, therefore suggesting that a balance between phosphorylation and dephosphorylation of the xylose by FAM20B and XYLP, respectively, is probably an essential factor for the regulation of the rate of PG synthesis. Full article
Show Figures

Figure 1

18 pages, 3805 KB  
Article
Identification of Biomarkers for Meat Quality in Sichuan Goats Through 4D Label-Free Quantitative Proteomics
by Rui Zhang, Mengling Xu, Rui Xu, Ting Bai, Dayu Liu, Xinhui Wang, Daodong Pan, Yin Zhang, Lin Zhang, Shifeng Pan and Jiamin Zhang
Animals 2025, 15(6), 887; https://doi.org/10.3390/ani15060887 - 20 Mar 2025
Cited by 1 | Viewed by 870
Abstract
The Nanjiang Yellow Goat (NJYG), Jintang Black Goat (JTBG), and Jianzhou Da’er Goat (JZDEG) are representative local goat breeds for meat production in Sichuan Province, China. This study conducted a comprehensive evaluation of the meat quality of the longissimus dorsi muscle of three [...] Read more.
The Nanjiang Yellow Goat (NJYG), Jintang Black Goat (JTBG), and Jianzhou Da’er Goat (JZDEG) are representative local goat breeds for meat production in Sichuan Province, China. This study conducted a comprehensive evaluation of the meat quality of the longissimus dorsi muscle of three goat breeds. Variations in meat quality were observed in terms of meat pH, color, ash and fat content, water activity, and muscle fiber structure. Quantitative proteomics analysis was employed to identify biomarkers for goat meat quality, revealing hundreds of differentially expressed proteins among three goat breeds. KEGG enrichment analysis revealed enriched pathways including oxidative phosphorylation, thermogenesis, citrate cycle (TCA cycle), fatty acid degradation and metabolism, as well as valine, leucine, and isoleucine degradation. Moreover, weighted protein co-expression network analysis and protein–protein interaction analysis uncovered valuable biomarkers, including GSTM3, NDUFS, OGDH, ACO2, HADH, ACAT1, ACADS, ACAA2, HSPG2, ITGA7, PARVB, ALDH9A1, ADH5, and LOC102190016, for assessing goat meat quality. This investigation highlighted the disparities in meat quality among local goat breeds in Sichuan, China, and provided insights into underlying biological pathways and valuable biomarkers for goat meat quality. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

16 pages, 2129 KB  
Article
Trastuzumab Decreases the Expression of G1/S Regulators and Syndecan-4 Proteoglycan in Human Rhabdomyosarcoma
by Dora Julianna Szabo, Eniko Toth, Kitti Szabo, Zsofia Kata Hegedus, Noemi Bozsity-Farago, Istvan Zupko, Laszlo Rovo, Xue Xiao, Lin Xu and Aniko Keller-Pinter
Int. J. Mol. Sci. 2025, 26(5), 2137; https://doi.org/10.3390/ijms26052137 - 27 Feb 2025
Viewed by 1118
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, arises from skeletal muscle cells that fail to differentiate terminally. Two subgroups of RMS, fusion-positive and fusion-negative RMS (FPRMS and FNRMS, respectively), are characterized by the presence or absence of the PAX3/7-FOXO1 fusion [...] Read more.
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, arises from skeletal muscle cells that fail to differentiate terminally. Two subgroups of RMS, fusion-positive and fusion-negative RMS (FPRMS and FNRMS, respectively), are characterized by the presence or absence of the PAX3/7-FOXO1 fusion gene. RMSs frequently exhibit increased expression of human epidermal growth factor receptor-2 (HER2). Trastuzumab is a humanized monoclonal antibody targeting HER2, and its potential role in RMS treatment remains to be elucidated. Syndecan-4 (SDC4) is a heparan sulfate proteoglycan (HSPG) affecting myogenesis via Rac1-mediated actin remodeling. Previously, we demonstrated that the SDC4 gene is amplified in 28% of human FNRMS samples, associated with high mRNA expression, suggesting a tumor driver role. In this study, after analyzing the copy numbers and mRNA expressions of other HSPGs in human RMS samples, we found that in addition to SDC4, syndecan-1, syndecan-2, and glypican-1 were also amplified and highly expressed in FNRMS. In RD (human FNRMS) cells, elevated SDC4 expression was accompanied by low levels of phospho-Ser179 of SDC4, leading to high Rac1-GTP activity. Notably, this high SDC4 expression in RD cells decreased following trastuzumab treatment. Trastuzumab decreased the levels of G1/S checkpoint regulators cyclin E and cyclin D1 and reduced the cell number; however, it also downregulated the cyclin-dependent kinase inhibitor p21. The level of MyoD, a transcription factor essential for RMS cell survival, also decreased following trastuzumab administration. Our findings contribute to the understanding of the role of SDC4 in FNRMS. Since HER2 is expressed in about half of RMSs, the trastuzumab-mediated changes observed here may have therapeutic implications. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 847 KB  
Article
Excess Weight Impairs Oocyte Quality, as Reflected by mtDNA and BMP-15
by Emiliya Sigal, Maya Shavit, Yuval Atzmon, Nardin Aslih, Asaf Bilgory, Daniella Estrada, Mediea Michaeli, Nechama Rotfarb, Yasmin Shibli Abu-Raya, Shilhav Meisel-Sharon and Einat Shalom-Paz
Cells 2024, 13(22), 1872; https://doi.org/10.3390/cells13221872 - 12 Nov 2024
Cited by 3 | Viewed by 1572
Abstract
This prospective, case-control study evaluated the impact of obesity on oocyte quality based on mtDNA expression in cumulus cells (CC), and on bone morphogenetic protein 15 (BMP-15) and heparan sulfate proteoglycan 2 (HSPG2) in follicular fluid (FF). It included women 18 to <40 [...] Read more.
This prospective, case-control study evaluated the impact of obesity on oocyte quality based on mtDNA expression in cumulus cells (CC), and on bone morphogenetic protein 15 (BMP-15) and heparan sulfate proteoglycan 2 (HSPG2) in follicular fluid (FF). It included women 18 to <40 years of age, divided according to BMI < 24.9 (Group 1, n = 28) and BMI > 25 (Group 2, n = 22). Demographics, treatment, and pregnancy outcomes were compared. The mtDNA in CC, BMP-15, HSPG2, the lipid profile, the hormonal profile, and C-reactive protein were evaluated in FF and in blood samples. The BMP-15 levels in FF and the mitochondrial DNA in CC were higher in Group 1 (38.8 ± 32.5 vs. 14.3 ± 10.8 ng/mL; p = 0.001 and 1.10 ± 0.3 vs. 0.87 ± 0.18-fold change; p = 0.016, respectively) than in Group 2. High-density lipoprotein levels in blood and FF were higher in Group 1 (62 ± 18 vs. 50 ± 12 mg/dL; p = 0.015 and 34 ± 26 vs. 20.9 ± 7.2 mg/dL; p = 0.05, respectively). Group 2 had higher blood C-reactive protein (7.1 ± 5.4 vs. 3.4 ± 4.3 mg/L; p = 0.015), FF (5.2 ± 3.8 vs. 1.5 ± 1.6 mg/L; p = 0.002) and low-density lipoprotein levels (91 ± 27 vs. 71 ± 22 mg/dL; p = 0.008) vs. Group 1. Group 1 demonstrated a trend toward a better clinical pregnancy rate (47.8% vs. 28.6%: p = 0.31) and frozen embryo transfer rate (69.2% vs. 53.8; p = 0.69). Higher BMI resulted in lower BMP-15 levels and reduced mtDNA expression, which reflect decreased oocyte quality in overweight women. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Reproductive System Diseases)
Show Figures

Figure 1

31 pages, 15032 KB  
Article
Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59
by Alexander Stepanov, Daria Shishkova, Victoria Markova, Yulia Markova, Alexey Frolov, Anastasia Lazebnaya, Karina Oshchepkova, Daria Perepletchikova, Daria Smirnova, Liubov Basovich, Egor Repkin and Anton Kutikhin
Int. J. Mol. Sci. 2024, 25(21), 11382; https://doi.org/10.3390/ijms252111382 - 23 Oct 2024
Cited by 4 | Viewed by 2020
Abstract
Calciprotein particles (CPPs) are essential circulating scavengers of excessive Ca2+ and PO43− ions, representing a vehicle that removes them from the human body and precludes extraskeletal calcification. Having been internalised by endothelial cells (ECs), CPPs induce their dysfunction, which is [...] Read more.
Calciprotein particles (CPPs) are essential circulating scavengers of excessive Ca2+ and PO43− ions, representing a vehicle that removes them from the human body and precludes extraskeletal calcification. Having been internalised by endothelial cells (ECs), CPPs induce their dysfunction, which is accompanied by a remarkable molecular reconfiguration, although little is known about this process’s extracellular signatures. Here, we applied ultra-high performance liquid chromatography-tandem mass spectrometry to perform a secretome-wide profiling of the cell culture supernatant from primary human coronary artery ECs (HCAECs) and internal thoracic artery ECs (HITAECs) treated with primary CPPs (CPP-P), secondary CPPs (CPP-S), magnesiprotein particles (MPPs), or Ca2+/Mg2+-free Dulbecco’s phosphate-buffered saline (DPBS) for 24 h. Incubation with CPP-P/CPP-S significantly altered the profiles of secreted proteins, delineating physiological and pathological endothelial secretomes. Neither pathway enrichment analysis nor the interrogation of protein–protein interactions detected extracellular matrix- and basement membrane-related molecular terms in the protein datasets from CPP-P/CPP-S-treated ECs. Both proteomic profiling and enzyme-linked immunosorbent assay identified an increased level of protectin (CD59) and reduced levels of osteonectin (SPARC), perlecan (HSPG2), and fibronectin (FN1) in the cell culture supernatant upon CPP-P/CPP-S treatment. Elevated soluble CD59 and decreased release of basement membrane components might be considered as potential signs of dysfunctional endothelium. Full article
(This article belongs to the Special Issue Calcium Metabolism and Regulation)
Show Figures

Figure 1

17 pages, 15284 KB  
Article
Syndecan-1 Plays a Role in the Pathogenesis of Sjögren’s Disease by Inducing B-Cell Chemotaxis through CXCL13–Heparan Sulfate Interaction
by Nan Young Lee, Hirut Yadeta Ture, Eun Ju Lee, Ji Ae Jang, Gunwoo Kim and Eon Jeong Nam
Int. J. Mol. Sci. 2024, 25(17), 9375; https://doi.org/10.3390/ijms25179375 - 29 Aug 2024
Cited by 1 | Viewed by 1453
Abstract
In Sjögren’s disease (SjD), the salivary glandular epithelial cells can induce the chemotaxis of B cells by secreting B-cell chemokines such as C-X-C motif chemokine ligand 13 (CXCL13). Syndecan-1 (SDC-1) is a major transmembrane heparan sulfate proteoglycan (HSPG) predominantly expressed on epithelial cells [...] Read more.
In Sjögren’s disease (SjD), the salivary glandular epithelial cells can induce the chemotaxis of B cells by secreting B-cell chemokines such as C-X-C motif chemokine ligand 13 (CXCL13). Syndecan-1 (SDC-1) is a major transmembrane heparan sulfate proteoglycan (HSPG) predominantly expressed on epithelial cells that binds to and regulates heparan sulfate (HS)-binding molecules, including chemokines. We aimed to determine whether SDC-1 plays a role in the pathogenesis of SjD by acting on the binding of HS to B-cell chemokines. To assess changes in glandular inflammation and SDC-1 concentrations in the submandibular gland (SMG) and blood, female NOD/ShiLtJ and sex- and age-matched C57BL/10 mice were used. In the SMG of NOD/ShiLtJ mice, inflammatory responses were identified at 8 weeks of age, but increased SDC-1 concentrations in the SMG and blood were observed at 6 weeks of age, when inflammation had not yet started. As the inflammation of the SMG worsened, the SDC-1 concentrations in the SMG and blood increased. The expression of the CXCL13 and its receptor C-X-C chemokine receptor type 5 (CXCR5) began to increase in the SMG at 6 weeks of age and continued until 12 weeks of age. Immunofluorescence staining in SMG tissue and normal murine mammary gland cells confirmed the co-localization of SDC-1 and CXCL13, and SDC-1 formed a complex with CXCL13 in an immunoprecipitation assay. Furthermore, NOD/ShiLtJ mice were treated with 5 mg/kg HS intraperitoneally thrice per week for 6–10 weeks of age, and the therapeutic effects in the SMG were assessed at the end of 10 weeks of age. NOD/ShiLtJ mice treated with HS showed attenuated salivary gland inflammation with reduced B-cell infiltration, germinal center formation and CXCR5 expression. These findings suggest that SDC-1 plays a pivotal role in the pathogenesis of SjD by binding to CXCL13 through the HS chain. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sjögren's Syndrome 3.0)
Show Figures

Figure 1

13 pages, 4993 KB  
Article
Mutual Inhibition of Antithrombin III and SARS-CoV-2 Cellular Attachment to Syndecans: Implications for COVID-19 Treatment and Vaccination
by Anett Hudák, Dávid Pusztai, Annamária Letoha and Tamás Letoha
Int. J. Mol. Sci. 2024, 25(14), 7534; https://doi.org/10.3390/ijms25147534 - 9 Jul 2024
Cited by 1 | Viewed by 3246
Abstract
Antithrombin III (ATIII) is a potent endogenous anticoagulant that binds to heparan sulfate proteoglycans (HSPGs) on endothelial cells’ surfaces. Among these HSPGs, syndecans (SDCs) are crucial as transmembrane receptors bridging extracellular ligands with intracellular signaling pathways. Specifically, syndecan-4 (SDC4) has been identified as [...] Read more.
Antithrombin III (ATIII) is a potent endogenous anticoagulant that binds to heparan sulfate proteoglycans (HSPGs) on endothelial cells’ surfaces. Among these HSPGs, syndecans (SDCs) are crucial as transmembrane receptors bridging extracellular ligands with intracellular signaling pathways. Specifically, syndecan-4 (SDC4) has been identified as a key receptor on endothelial cells for transmitting the signaling effects of ATIII. Meanwhile, SDCs have been implicated in facilitating the cellular internalization of SARS-CoV-2. Given the complex interactions between ATIII and SDC4, our study analyzed the impact of ATIII on the virus entry into host cells. While ATIII binds to all SDC isoforms, it shows the strongest affinity for SDC4. SDCs’ heparan sulfate chains primarily influence ATIII’s SDC attachment, although other parts might also play a role in ATIII’s dominant affinity toward SDC4. ATIII significantly reduces SARS-CoV-2′s cellular entry into cell lines expressing SDCs, suggesting a competitive inhibition mechanism at the SDC binding sites, particularly SDC4. Conversely, the virus or its spike protein decreases the availability of SDCs on the cell surface, reducing ATIII’s cellular attachment and hence contributing to a procoagulant environment characteristic of COVID-19. Full article
(This article belongs to the Special Issue Coronavirus Disease (COVID-19): Pathophysiology 5.0)
Show Figures

Figure 1

13 pages, 3604 KB  
Article
Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae
by Jiyuan Yang, Yuefan Song, Ke Xia, Vitor H. Pomin, Chunyu Wang, Mingqiang Qiao, Robert J. Linhardt, Jonathan S. Dordick and Fuming Zhang
Mar. Drugs 2024, 22(5), 232; https://doi.org/10.3390/md22050232 - 20 May 2024
Cited by 1 | Viewed by 2354
Abstract
Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen–host interactions, presenting a strategic target for therapeutic [...] Read more.
Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen–host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen–host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library’s efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections. Full article
(This article belongs to the Special Issue Biomedical Application of Marine-Derived Carbohydrates)
Show Figures

Figure 1

Back to TopTop