Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = Kaplan turbine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10609 KB  
Article
Computational Fluid Dynamics Analysis of Draft Tube Flow Characteristics in a Kaplan Turbine
by Qinwen Yan, Zhiqiang Xiong, Yuan Zheng, Chen Feng, Zhen Li, Lin Hu and Lianchen Xu
Actuators 2025, 14(6), 298; https://doi.org/10.3390/act14060298 - 18 Jun 2025
Viewed by 390
Abstract
This study presents a numerical investigation of the internal flow characteristics within the draft tube of a Kaplan turbine using computational fluid dynamics (CFD). The distribution and evolution of vortical structures, particularly the formation and development of vortex ropes under various operating conditions, [...] Read more.
This study presents a numerical investigation of the internal flow characteristics within the draft tube of a Kaplan turbine using computational fluid dynamics (CFD). The distribution and evolution of vortical structures, particularly the formation and development of vortex ropes under various operating conditions, are systematically analyzed. The study aims to explore the effects of blade angle and guide vane opening on the internal flow characteristics of the unit, thereby providing guidance for flow control strategies. The influence of guide vane opening and turbine head on vortex dynamics and flow stability is examined, with a focus on the pressure pulsations induced by vortex ropes through frequency-domain analysis. The results indicate that increased guide vane openings and higher heads lead to the expansion and downstream extension of the vortex rope into the elbow section, causing significant low-frequency pressure pulsations and enhancing flow instability. These findings contribute to a deeper understanding of unsteady flow behavior in Kaplan turbine draft tubes and provide a theoretical foundation for improving hydraulic stability and optimizing operational performance. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

15 pages, 2211 KB  
Article
Dynamic Modeling of a Kaplan Hydroturbine Using Optimal Parametric Tuning and Real Plant Operational Data
by Hong Wang, Sunil Subedi and Wenbo Jia
Dynamics 2025, 5(2), 20; https://doi.org/10.3390/dynamics5020020 - 2 Jun 2025
Viewed by 685
Abstract
To address grid variability caused by renewable energy integration and to maintain grid reliability and resilience, hydropower must quickly adjust its power generation over short time periods. This changing energy generation landscape requires advance technology integration and adaptive parameter optimization for hydropower systems [...] Read more.
To address grid variability caused by renewable energy integration and to maintain grid reliability and resilience, hydropower must quickly adjust its power generation over short time periods. This changing energy generation landscape requires advance technology integration and adaptive parameter optimization for hydropower systems via digital twin effort. However, this is difficult owing to the lack of characterization and modeling for the nonlinear nature of hydroturbines. To solve this issue, this paper first formulates a six-coefficient Kaplan hydroturbine model and then proposes a parametric optimization tuning framework based on the Nelder–Mead algorithm for adaptive dynamic learning of the six-coefficients so as to build models that describe the turbine. To assess the performance of the proposed optimal parametric tuning technique, operational data from a real-world Kaplan hydroturbine unit are collected and used to model the relationship between the gate opening and the generated power production. The findings show that the proposed technique can effectively and adaptively learn the unknown dynamics of the Kaplan hydroturbine while optimally tune the unknown coefficients to match the generated power output from the real hydroturbine unit with an inaccuracy of less than 5%. The method can be used to provides optimal tuning of parameters critical for controller design, operational optimization and daily maintenance for hydroturbines in general. Full article
Show Figures

Figure 1

21 pages, 452 KB  
Article
Heat-Loss Based Method for Real-Time Monitoring Method for Hydroelectric Power Plant Efficiency
by Lorenzo Battisti, Lorenzo Tieghi and Soheil Fattahi
Energies 2025, 18(10), 2586; https://doi.org/10.3390/en18102586 - 16 May 2025
Viewed by 526
Abstract
In energy transition scenarios, hydropower remains the largest source of renewable electricity generation. However, with respect to other means of renewable energy exploitation, like wind turbines or photovoltaics, very few technological advancements are to be expected, due to the technological maturity of hydropower [...] Read more.
In energy transition scenarios, hydropower remains the largest source of renewable electricity generation. However, with respect to other means of renewable energy exploitation, like wind turbines or photovoltaics, very few technological advancements are to be expected, due to the technological maturity of hydropower turbines. Therefore, an increase in power production of hydropower plants can only be possible thanks to an optimization of the operation and maintenance policies, leading to improved performance, reducing energy losses and downtimes. This work proposes a practical approach to the continuous monitoring of the operational conditions of hydropower plants through the non-invasive measurement of the electrical efficiency of the generator group. To achieve this, a heat-loss based method is introduced, which enables the measurement of both the electrical generator losses and the electrical input power, along with their associated uncertainties. This method is applicable for plants of any size, does not require a production shutdown, and, since it is applied to the electrical generator, can be used with different turbine types, including Kaplan, Francis, and Pelton. It also relies on relatively simple instruments such as thermo-cameras, thermo-resistances, thermo-couples, and flow meters to measure key variables, including cooling water inlet and outlet temperatures, electrical machine external and frame temperatures, undisturbed ambient temperature, electrical power absorbed, and cooling water flow rate. The proposed methodology has been tested and validated through the application to a laboratory test rig. In all test conditions, the heat loss-based method showed a smaller relative error than the standard efficiency measurement methods. Full article
Show Figures

Figure 1

19 pages, 1358 KB  
Article
Friction Monitoring in Kaplan Turbines
by Lars-Johan Sandström, Kim Berglund, Pär Marklund and Gregory F. Simmons
Machines 2025, 13(4), 313; https://doi.org/10.3390/machines13040313 - 11 Apr 2025
Viewed by 449
Abstract
Hydropower is important in the modern power system due to its ability to quickly adjust production. More frequent use of this ability may lead to increased maintenance needs, highlighting the importance of research in condition monitoring for hydropower. This study suggests a model [...] Read more.
Hydropower is important in the modern power system due to its ability to quickly adjust production. More frequent use of this ability may lead to increased maintenance needs, highlighting the importance of research in condition monitoring for hydropower. This study suggests a model approach for friction monitoring of the bearings inside the Kaplan turbine’s hub. The approach is developed for when normal and anomalous data exist. The study compares isolation forest (iForest), local outlier factor (LOF), one-class support vector machine (OC-SVM), and Mahalanobis distance (MD) for anomaly detection, where iForest and OC-SVM appear to be good choices due to their robust performance. A moving decision filter (MDF) is fed with the output from the anomaly detection models to classify the data as normal or anomalous. The parameters in the MDF are optimized with Bayesian optimization to increase the performance of the models. The approach is tested using data from two actual hydropower turbines. The study shows that the model approach works for both turbines. However, the parameter optimization must be performed separately for each turbine. Full article
(This article belongs to the Special Issue Vibration-Based Machines Wear Monitoring and Prediction)
Show Figures

Figure 1

19 pages, 2253 KB  
Review
Recent Progress in Research on the Design and Use of an Archimedes Screw Turbine: A Review
by Piotr Sołowiej and Krzysztof Łapiński
Sustainability 2025, 17(1), 201; https://doi.org/10.3390/su17010201 - 30 Dec 2024
Viewed by 2198
Abstract
Due to the ever-increasing demand for clean energy derived from renewable sources, new options for obtaining it are being sought. The energy of water streams, compared to wind energy or solar energy, has the advantage that it can be supplied continuously. A relatively [...] Read more.
Due to the ever-increasing demand for clean energy derived from renewable sources, new options for obtaining it are being sought. The energy of water streams, compared to wind energy or solar energy, has the advantage that it can be supplied continuously. A relatively new solution used in hydro power plants is the AST (Archimedes screw turbine), which perfectly complements the possibilities of energy use of water courses. This solution can be used at lower heads and lower flows than is the case with power plants using Kaplan, Francis, or similar turbines. An AST power plant is cheaper to build and operate and has less negative environmental impact than traditional solutions. Accordingly, research is being conducted to improve the efficiency of the AST in terms of its environmental impact, efficiency, length, angle of inclination, and others. These studies revealed sources of losses, optimal operating conditions, and turbine design methods. They also showed the much lower environmental impact of Archimedes screw turbines compared to the others. In the course of compiling this review, the authors noticed some differences regarding the description proposed by different authors of the characteristic geometric dimensions of turbines and other quantities. Full article
Show Figures

Figure 1

21 pages, 9983 KB  
Article
Vibration and Flow Characteristics of a 200 MW Kaplan Turbine Unit under Off-Cam Conditions
by Dandan Yan, Shuqiang Chen, Peng Ren, Weiqiang Zhao, Xiaobin Chen, Chengming Liu, Lingjiu Zhou and Zhengwei Wang
Machines 2024, 12(8), 586; https://doi.org/10.3390/machines12080586 - 22 Aug 2024
Cited by 1 | Viewed by 1212
Abstract
Kaplan turbine units can adjust their blades to achieve wider outputs without a significant loss of efficiency. The combination of guide vane angle (GVA) and blade angle (BA) is selected based on efficiency curves obtained from cam tests. However, the vibration characteristics are [...] Read more.
Kaplan turbine units can adjust their blades to achieve wider outputs without a significant loss of efficiency. The combination of guide vane angle (GVA) and blade angle (BA) is selected based on efficiency curves obtained from cam tests. However, the vibration characteristics are not considered in the test. The vibration and flow characteristics are complex with different combinations of guide vane and blade angles. Different cam relation selection principles lead to varying machine vibration and flow characteristics. In this research, the flow and vibration characteristics were obtained by means of field test and numerical simulation. Vibration, pressure pulsation, and other stability indicators have been extracted and investigated under off-cam conditions. The flow and variation rules of different indicators have been thoroughly researched. The findings suggest that the magnitude of vibration in the X direction surpassed that in the Y direction for the head cover, upper frame, and lower frame under 22 experimental conditions. The disparity between the head cover and upper frame in both directions was not significant, whereas a substantial contrast existed between the lower frame in the X and Y directions. The calculation results indicate that when the guide vane angle was small, vortices appeared near the high-pressure edge of the runner in the vaneless region and caused disorganized flow lines in the runner, and this complex vortex behavior led to multiple frequency components in the pressure pulsation frequency domain. The conclusions provide references for the designers of Kaplan turbine units and improves the operating safety of Kaplan turbine power stations. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

18 pages, 6378 KB  
Article
Experimental Fitting of Efficiency Hill Chart for Kaplan Hydraulic Turbine
by Roberto Capata, Alfonso Calabria, Gian Marco Baralis and Giuseppe Piras
Designs 2024, 8(4), 80; https://doi.org/10.3390/designs8040080 - 13 Aug 2024
Cited by 1 | Viewed by 2160
Abstract
The development of hydroelectric technology and much of the “knowledge” on hydraulic phenomena derive from scale modeling and “bench” tests to improve machinery efficiency. The result of these experimental tests is mapping the so-called “hill chart”, representing the “DNA” of a turbine model. [...] Read more.
The development of hydroelectric technology and much of the “knowledge” on hydraulic phenomena derive from scale modeling and “bench” tests to improve machinery efficiency. The result of these experimental tests is mapping the so-called “hill chart”, representing the “DNA” of a turbine model. Identifying the efficiency values as a function of the specific parameters of the flow and energy coefficient (which both identify the operating point) allows us to represent the complete behavior of a turbine in hydraulic similarity with the original model developed in the laboratory. The present work carries out a “reverse engineering” operation that leads to the definition of “an innovative research model” that is relatively simple to use in every field. Thus, from the experimental survey of the degree of efficiency of several prototypes of machines deriving from the same starting model, the hill chart of the hydraulic profile used is reconstructed. The “mapping” of all the characteristic quantities of the machine, together with the physical parameters of the regulating organs of a four-blade Kaplan turbine model, also made it possible to complete the process, allowing to identify not only the iso-efficiency regions but also the curves relating to the trend of the angle of the impeller blades, the specific opening of the distributor, and the identification of critical areas of cavitation. The development of the hill chart was made possible by investigating the behavior of 33 actual prototypes and 46 characteristic curves derived from the same reference model based on practical experiments for finding the optimal blade distributor “setup curve”. To complete this, theoretical characteristic curves of “not physically realized” prototypes were also mapped, allowing us to complete the regions comprising the diagram. The study of the unified hill charts found in previous documentation of the most famous manufacturers was of great help. Finally, the validation of the “proposed procedure” was obtained through the experimental survey of the actual efficiency of the new prototype based on the theoretical values defined in the design phase on the chart obtained with the method described. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

17 pages, 69768 KB  
Article
Dynamic Response Characteristics of Rotating and Fixed Components of the Kaplan Turbine under Low and Medium Heads
by Hongyun Luo, Guiyu Wang, Xiaobin Chen, Chengming Liu, Lingjiu Zhou and Zhengwei Wang
Water 2024, 16(15), 2137; https://doi.org/10.3390/w16152137 - 28 Jul 2024
Viewed by 2772
Abstract
The vibration of large Kaplan turbines has always been one of the key research issues of turbines. Affected by the load and head of the power station, the Kaplan turbine will operate under medium and low heads, and the components will vibrate violently, [...] Read more.
The vibration of large Kaplan turbines has always been one of the key research issues of turbines. Affected by the load and head of the power station, the Kaplan turbine will operate under medium and low heads, and the components will vibrate violently, seriously threatening the stable operation of the unit. Compared with other types of turbines, the runner structure of the Kaplan turbine is more complex. Therefore, in addition to the fixed components, the dynamic response characteristics of the rotating components are also be the focus of this study. In this paper, four operating points under high, medium and low heads are selected. The unsteady flow field and fluid–structure interaction are calculated. The modal and dynamic stress characteristics of the fixed components (bottom ring, head cover and support cover) and the rotating components (blades, runner body and main shaft) are analyzed. The results show that the location of the stress concentration of fixed components under low heads changes significantly, and the stress fluctuates greatly due to the influence of the stay vanes. The rotating components are more affected by the rotation of the runner under low heads, and the displacement and stress fluctuations of the rotating structure are significantly greater than those of medium and high heads. The pressure fluctuations in the vaneless area and draft tube cause some low-frequency excitation. The stress fluctuations of rotating components under low heads are much greater than those of the fixed components. This shows that the head has a greater impact on the rotating components, which is more likely to cause damage to the rotating components, seriously threatening the stable operation of the unit. Full article
(This article belongs to the Special Issue Hydrodynamic Science Experiments and Simulations)
Show Figures

Figure 1

21 pages, 11473 KB  
Article
Inner Flow Analysis of Kaplan Turbine under Off-Cam Conditions
by Dandan Yan, Haiqiang Luo, Weiqiang Zhao, Yibin Wu, Lingjiu Zhou, Xiaofu Fan and Zhengwei Wang
Energies 2024, 17(11), 2548; https://doi.org/10.3390/en17112548 - 24 May 2024
Cited by 1 | Viewed by 1315
Abstract
Kaplan turbines are widely utilized in low-head and large flow power stations. This paper employs Computational Fluid Dynamics (CFD) to complete numerical calculations of the full flow channel under different blade angles and various guide vane openings, based on 25 off-cam experimental working [...] Read more.
Kaplan turbines are widely utilized in low-head and large flow power stations. This paper employs Computational Fluid Dynamics (CFD) to complete numerical calculations of the full flow channel under different blade angles and various guide vane openings, based on 25 off-cam experimental working conditions. The internal flow characteristics of the runner blade and draft tube are analyzed, and a discriminant number for quantitatively assessing the flow uniformity of the draft tube is proposed. The results indicate that low-frequency and high-amplitude pressure pulsations occur on the high- and low-pressure edge of the blade when the opening is small, with pulsations decreasing as the opening increases. The inner flow line of the draft tube is disturbed when both the blade angle and opening are small. Additionally, the secondary frequency of the draft tube inlet is double that of the vane passing frequency. The discriminant number of the flow inhomogeneity approaches 0 under optimal flow conditions. The number increases continuously with the decrease in efficiency, and the flow in the three piers of draft tube becomes more nonuniform. The research results provide a reference for enhancing performance and ensuring the operational stability of Kaplan turbines. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

15 pages, 5021 KB  
Article
Study on Structure Dynamic Characteristics for Internal Components of Kaplan Turbine Runner under Different Contact Modes
by Chengming Liu, Haiqiang Luo, Guiyu Wang, Xiaobin Chen, Lingjiu Zhou and Zhengwei Wang
Processes 2024, 12(6), 1061; https://doi.org/10.3390/pr12061061 - 22 May 2024
Cited by 2 | Viewed by 1618
Abstract
The stress and fatigue of the runner during the operation of the large Kaplan turbine are one of the key issues in the operation of turbines. Due to the complexity of the working load and the geometric configuration of the Kaplan turbine runner, [...] Read more.
The stress and fatigue of the runner during the operation of the large Kaplan turbine are one of the key issues in the operation of turbines. Due to the complexity of the working load and the geometric configuration of the Kaplan turbine runner, the different contact modes between the internal components of the runner will have an impact on the stress and fatigue results. Therefore, the unsteady CFD calculation of the full channel is conducted in this article to analyze the hydraulic characteristics of the turbine blades in the unsteady flow field, such as pressure and torque. The pressure load is loaded onto the runner using a fluid–structure interaction (FSI) theory, and the stress characteristics of the blade, blade lever, and runner body are compared under three contact modes. Based on the dynamic stress spectrum of the blade lever calculated under three contact conditions, the life of the blade lever is predicted using the rain flow counting method and the Palmgren–Miner theory. The results indicate that the rotation of the runner has a significant impact on the hydraulic and structural characteristics of the Kaplan turbine. The non-uniform and asymmetric stress and torque conditions gradually cause fatigue in the components of the runner. The average and amplitude of dynamic stress on the blade, blade lever, and runner body under frictional and frictionless contact are greater than those of fixed contact. The life of the blade lever calculated under fixed contact is much greater than that under frictional and frictionless contact; therefore, the contact conditions have a significant impact on the structural characteristics of the runner. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 8324 KB  
Article
Optimization of Elbow Draft Tubes for Variable Speed Propeller Turbine
by Jiří Souček and Petr Nowak
Water 2024, 16(10), 1457; https://doi.org/10.3390/w16101457 - 20 May 2024
Cited by 3 | Viewed by 1871
Abstract
The design of the elbow draft tubes is challenging due to the complexity of the flow. The whole turbine unit’s power output strongly depends on the draft tube function, especially for the low-head turbines. The article presents a novel approach to optimizing elbow [...] Read more.
The design of the elbow draft tubes is challenging due to the complexity of the flow. The whole turbine unit’s power output strongly depends on the draft tube function, especially for the low-head turbines. The article presents a novel approach to optimizing elbow draft tubes for a variable-speed propeller turbine designed for low-head applications. First, the study addresses the specifics of the propeller variable speed turbine by comparing the classical Kaplan turbine. Then, the grid scaling test is conducted to evaluate the uncertainty of the pressure regeneration. Further, a new approach to parameterising the elbow draft tube geometry is introduced. The study employs ANSYS CFX 2021 R1 software for numerical simulation to optimise the elbow draft tube geometry in the CAESES environment. After the sensitivity test and deselecting the non-sensitive parameters, we perform multi-objective genetic algorithm (MOGA) optimization. The optimization process results in a Pareto front of optimised elbow draft tube shapes with the best pressure regeneration for different draft tube construction heights, enabling the selection of suitable candidates for various locations. Minimal difference in the performance of the selected elbow draft tube shapes with the simple straight draft tube confirms a high-quality draft tube optimization achievement. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

24 pages, 5993 KB  
Article
A Comparative Analysis of Distributor and Rotor Single Regulation Strategies for Low Head Mini Hydraulic Turbines
by Dario Barsi, Francesca Satta, Marina Ubaldi and Pietro Zunino
Energies 2024, 17(10), 2304; https://doi.org/10.3390/en17102304 - 10 May 2024
Cited by 1 | Viewed by 1441
Abstract
Tubular axial turbines (TATs) play a crucial role in mini and micro hydropower setups that require simplified yet reliable solutions. In very low head scenarios, single regulation in TATs is common, due to economic impracticality of the sophisticated mechanisms involved in the conjugate [...] Read more.
Tubular axial turbines (TATs) play a crucial role in mini and micro hydropower setups that require simplified yet reliable solutions. In very low head scenarios, single regulation in TATs is common, due to economic impracticality of the sophisticated mechanisms involved in the conjugate distributor–rotor regulation typical of the Kaplan turbines. Distributor or rotor single regulation strategies offer operation flexibility, each with distinct advantages and disadvantages. Stator regulation is simpler, while rotor regulation is more complex but offers potential efficiency gains. The present paper analyzes energy losses associated with these regulation strategies using two approaches: 1D mean line turbomachinery equations and 3D Computational Fluid Dynamics (CFD). The 1D mean line approach is used for understanding the conceptual fluid dynamic aspects involved in the two different regulation approaches, thereby identifying the loss-generation mechanisms in off-design operation. Fully 3D CFD simulations allow for quantifying and deeply explaining the differences in the hydraulic efficiencies of the two regulation strategies. Attention is focused on the two main loss contributions: residual tangential kinetic energy at the rotor outlet and entropy generation. Rotor regulation, even if more complex, provides better results than distributor regulation in terms of both effectiveness (larger flow rate sensitivity to stagger angle variation) and turbine operating efficiency (lower off-design losses). Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

20 pages, 2060 KB  
Article
Turbomachinery GPU Accelerated CFD: An Insight into Performance
by Daniel Molinero-Hernández, Sergio R. Galván-González, Nicolás D. Herrera-Sandoval, Pablo Guzman-Avalos, J. Jesús Pacheco-Ibarra and Francisco J. Domínguez-Mota
Computation 2024, 12(3), 57; https://doi.org/10.3390/computation12030057 - 11 Mar 2024
Cited by 1 | Viewed by 3488
Abstract
Driven by the emergence of Graphics Processing Units (GPUs), the solution of increasingly large and intricate numerical problems has become feasible. Yet, the integration of GPUs into Computational Fluid Dynamics (CFD) codes still presents a significant challenge. This study undertakes an evaluation of [...] Read more.
Driven by the emergence of Graphics Processing Units (GPUs), the solution of increasingly large and intricate numerical problems has become feasible. Yet, the integration of GPUs into Computational Fluid Dynamics (CFD) codes still presents a significant challenge. This study undertakes an evaluation of the computational performance of GPUs for CFD applications. Two Compute Unified Device Architecture (CUDA)-based implementations within the Open Field Operation and Manipulation (OpenFOAM) environment were employed for the numerical solution of a 3D Kaplan turbine draft tube workbench. A series of tests were conducted to assess the fixed-size grid problem speedup in accordance with Amdahl’s Law. Additionally, tests were performed to identify the optimal configuration utilizing various linear solvers, preconditioners, and smoothers, along with an analysis of memory usage. Full article
Show Figures

Figure 1

23 pages, 7012 KB  
Article
Sensor Fish Deployments at the Xayaburi Hydropower Plant: Measurements and Simulations
by Pedro Romero-Gomez, Thanasak Poomchaivej, Rajesh Razdan, Wayne Robinson, Rudolf Peyreder, Michael Raeder and Lee J. Baumgartner
Water 2024, 16(5), 775; https://doi.org/10.3390/w16050775 - 5 Mar 2024
Cited by 3 | Viewed by 1962
Abstract
Fish protection is a priority in regions with ongoing and planned development of hydropower production, like the Mekong River system. The evaluation of the effects of turbine passage on the survival of migratory fish is a primary task for informing hydropower plant operators [...] Read more.
Fish protection is a priority in regions with ongoing and planned development of hydropower production, like the Mekong River system. The evaluation of the effects of turbine passage on the survival of migratory fish is a primary task for informing hydropower plant operators and authorities about the environmental performance of plant operations. The present work characterizes low pressures and collision rates through the Kaplan-type runners of the Xayaburi hydropower station. Both an experimental method based on the deployment of Sensor Fish and a numerical strategy based on flow and passage simulations were implemented on the analysis of two release elevations at one operating point. Nadir pressures and pressure drops through the runner were very sensitive to release elevation, but collision rates on the runner were not. The latter showed a frequency of occurrence of 8.2–9.3%. Measured magnitudes validated the corresponding simulation outcomes in regard to the averaged magnitudes as well as to the variability. Central to this study is that simulations were conducted based on current industry practices for designing turbines. Therefore, the reported agreement helps turbine engineers gain certainty about the prediction power of flow and trajectory simulations for fish passage assessments. This can accelerate the development of environmentally enhanced technology with minimum impact on natural resources. Full article
Show Figures

Figure 1

13 pages, 5492 KB  
Article
A Comparative Study on the Cam Relationship for the Optimal Vibration and Efficiency of a Kaplan Turbine
by Sen Deng, Weiqiang Zhao, Tianbao Huang, Ming Xia and Zhengwei Wang
J. Mar. Sci. Eng. 2024, 12(2), 241; https://doi.org/10.3390/jmse12020241 - 30 Jan 2024
Cited by 1 | Viewed by 2527
Abstract
Kaplan turbines are generally used in working conditions with a high flow and low head. These are a type of axial-flow hydro turbine that can adjust the opening of the guide vanes and blades simultaneously in order to achieve higher efficiency under a [...] Read more.
Kaplan turbines are generally used in working conditions with a high flow and low head. These are a type of axial-flow hydro turbine that can adjust the opening of the guide vanes and blades simultaneously in order to achieve higher efficiency under a wider range of loads. Different combinations of the opening of the guide vanes and blades (cam relationship) will lead to changes in the efficiency of the turbine unit as well as its vibration characteristics. A bad cam relationship will cause the low efficiency or unstable operation of the turbine. In this study, the relative efficiency and vibration of a large-scale Kaplan turbine with 200 MW output were tested with different guide vane and blade openings. The selection of the cam relationship curve for both optimal efficiency and optimal vibration is discussed. Compared with the cam relationship given by the model test, the prototype cam relationship improves the efficiency and reduces the vibration level. Compared to the optimal efficiency cam relationship, the optimal vibration cam relationship reduces the efficiency of the machine by 1% to 2%, while with the optimal efficiency cam relationship, the vibration of the unit increases significantly. This research provides guidance for the optimization of the regulation of a large adjustable-blade Kaplan turbine unit and improves the overall economic benefits and safety performance of the Kaplan turbine power station. Full article
(This article belongs to the Special Issue Advancement in the Multiphase Flow in Fluid Machinery)
Show Figures

Figure 1

Back to TopTop