Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = MICP process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8264 KB  
Review
Construction Biotechnology: Integrating Bacterial Systems into Civil Engineering Practices
by Olja Šovljanski, Ana Tomić, Tiana Milović, Vesna Bulatović, Aleksandra Ranitović, Dragoljub Cvetković and Siniša Markov
Microorganisms 2025, 13(9), 2051; https://doi.org/10.3390/microorganisms13092051 - 3 Sep 2025
Abstract
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 [...] Read more.
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 and a five-fold increase in annual output since 2020. Beyond bibliometric growth, technical studies have demonstrated the remarkable performance of bacterial systems: for example, microbial-induced calcium carbonate precipitation (MICP) can increase the compressive strength of treated soils by 60–70% and reduce permeability by more than 90% in field-scale trials. In concrete applications, bacterial self-healing has been shown to seal cracks up to 0.8 mm wide and improve water tightness by 70–90%. Similarly, biofilm-mediated corrosion barriers can extend the durability of reinforced steel by significantly reducing chloride ingress, while bacterial biopolymers such as xanthan gum and curdlan enhance soil cohesion and water retention in eco-grouting and erosion control. The novelty of this review lies in its interdisciplinary scope, integrating microbiological mechanisms, materials science, and engineering practice to highlight how bacterial processes can transition from laboratory models to real-world applications. By combining quantitative evidence with critical assessment of scalability, biosafety, and regulatory challenges, this paper provides a comprehensive framework that positions construction biotechnology as a transformative pathway towards low-carbon, adaptive, and resilient infrastructure systems. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

20 pages, 13032 KB  
Article
Characterization of Indigenous Bacteria for Microbially Induced Carbonate Precipitation in a Limestone Mine
by Xiulun Shen, Kimihiro Hashiba, Tomoyoshi Yakata, Kotaro Yoshida and Hajime Kobayashi
Microorganisms 2025, 13(9), 1985; https://doi.org/10.3390/microorganisms13091985 - 26 Aug 2025
Viewed by 393
Abstract
Microbially induced carbonate precipitation (MICP) refers to the formation of calcium carbonate driven by microbial metabolic processes, such as ureolysis. As an emerging biocementation technique, MICP has garnered attention for various applications in environmental and civil engineering. This study evaluated the feasibility of [...] Read more.
Microbially induced carbonate precipitation (MICP) refers to the formation of calcium carbonate driven by microbial metabolic processes, such as ureolysis. As an emerging biocementation technique, MICP has garnered attention for various applications in environmental and civil engineering. This study evaluated the feasibility of MICP implementation in a limestone mine. Ureolytic bacteria were isolated from an active limestone quarry at Mt. Buko, Saitama, Japan. Located at an elevation above 1000 m, the site represents a low-temperature environment with an average annual temperature of ~10 °C. The representative isolates, Rhodococcus sp. strains L6 and L8, exhibited tolerance to key environmental factors relevant to MICP applications in the limestone-rich settings, including alkaline pH, high calcium levels, and elevated urea concentrations. Additionally, both strains were psychrotolerant, maintaining growth and urease activity at temperatures as low as 5 °C. Notably, both strains induced calcite crystal formation at 10 °C and 5 °C, although the reaction was slower at 5 °C. Furthermore, strain L6 demonstrated the ability to induce MICP on limestone surfaces, effectively sealing rock fissures. These findings suggest that indigenous microbes retain metabolic activity in the limestone mine and are well suited for MICP applications. Full article
Show Figures

Figure 1

20 pages, 11244 KB  
Article
Pore Structure Characteristics and Genesis of Low-Permeability Sandstone Reservoirs in the Eocene Wenchang Formation, Huizhou Sag, Pearl River Mouth Basin, Northern South China Sea
by Guanliang Zhang, Jiancheng Niu, Zhiling Yang, Qibiao Zang, Qingyu Zhang, Haoxian Liu, Qamar Yasin and Mengdi Sun
J. Mar. Sci. Eng. 2025, 13(9), 1620; https://doi.org/10.3390/jmse13091620 - 25 Aug 2025
Viewed by 343
Abstract
Porosity and permeability are critical parameters in petroleum exploration and development. The relationship between pore structure and permeability in near-source reservoirs is more closely correlated than in other types of reservoirs. This study investigates the pore structure and formation processes of low-permeability sandstone [...] Read more.
Porosity and permeability are critical parameters in petroleum exploration and development. The relationship between pore structure and permeability in near-source reservoirs is more closely correlated than in other types of reservoirs. This study investigates the pore structure and formation processes of low-permeability sandstone reservoirs in the Wenchang Formation, Huizhou Depression, Pearl River Mouth Basin (Northern South China Sea). We collected ten core samples of low-permeability sandstone reservoirs at various depths from the key well (A). Multiple analytical techniques were employed, including mercury intrusion capillary pressure (MICP), constant velocity mercury injection (CMI), Wood’s metal impregnation (WM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and quantitative evaluation of minerals via scanning electron microscopy (QEMSCAN). Pore-throat types were classified using fractal theory, followed by analyzing the physical and structural characteristics of interconnected pore-throat reservoir systems. This study examined the impact of various pore types on the physical properties of reservoirs, providing a comprehensive classification and characterization of pore structures in low-permeability sandstone reservoirs. Our findings provide significant insights and recommendations for future developmental initiatives in this region. Full article
(This article belongs to the Special Issue Advances in Offshore Oil and Gas Exploration and Development)
Show Figures

Figure 1

28 pages, 5160 KB  
Article
Comparative Study of Mechanical and Microstructural Properties of Biocemented Sandy Soils Enhanced with Biopolymer: Evaluation of Mixing and Injection Treatment Methods
by Mutlu Şimşek, Semet Çelik and Harun Akoğuz
Appl. Sci. 2025, 15(14), 8090; https://doi.org/10.3390/app15148090 - 21 Jul 2025
Viewed by 396
Abstract
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine [...] Read more.
Soil improvement is one of the fundamental practices in civil engineering, with a long-standing history. In today’s context, the rapidly increasing demand for construction driven by urbanization has further emphasized the necessity and significance of soil stabilization techniques. This study aims to determine the optimum parameters for improving sandy soils by incorporating sodium alginate (SA) as a biopolymer additive into the microbial calcium carbonate precipitation (MICP) process. Sand types S1, S2, and S3, each with distinct particle size distributions, were selected, and the specimens were prepared at medium relative density. Three distinct approaches, MICP, SA, and MICP + SA, were tested for comparison. Additionally, two different improvement methods, injection and mixing, were applied to investigate their effects on the geotechnical properties of the soils. In this context, hydraulic conductivity, unconfined compressive strength (UCS), and calcite content tests, as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses, were performed to assess the changes in soil behavior. SA contributed positively to the overall efficiency of the MICP process. The study highlights SA-assisted MICP as an alternative that enhances the microstructural integrity of treated soils and responds to the environmental limitations of conventional methods through sustainable innovation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 3584 KB  
Article
Interpretable Ensemble Learning with Lévy Flight-Enhanced Heuristic Technique for Strength Prediction of MICP-Treated Sands
by Yingui Qiu, Shibin Yao, Hongning Qi, Jian Zhou and Manoj Khandelwal
Appl. Sci. 2025, 15(14), 7972; https://doi.org/10.3390/app15147972 - 17 Jul 2025
Viewed by 269
Abstract
Microbially-induced calcite precipitation (MICP) has emerged as a promising bio-geotechnical technique for sustainable soil improvement, yet accurate prediction of treatment effectiveness remains challenging due to complex multi-factor interactions. This study develops an ensemble learning framework (LARO-EnML) for predicting the unconfined compressive strength (UCS) [...] Read more.
Microbially-induced calcite precipitation (MICP) has emerged as a promising bio-geotechnical technique for sustainable soil improvement, yet accurate prediction of treatment effectiveness remains challenging due to complex multi-factor interactions. This study develops an ensemble learning framework (LARO-EnML) for predicting the unconfined compressive strength (UCS) of MICP-treated sand. A comprehensive database containing 402 experimental datasets was utilised in the study, consisting of unconfined compression test results from bio-cemented sands with eight key input parameters considered. The performance evaluation demonstrates that LARO-EnML achieves superior predictive accuracy, with RMSE of 0.5449, MAE of 0.2853, R2 of 0.9570, and OI of 0.9597 on the test data, significantly outperforming other models. Model interpretability analysis reveals that calcite content serves as the most influential factor, with a strong positive correlation to strength enhancement, while urease activity exhibits complex, staged influence characteristics. This research contributes to advancing the practical implementation of MICP technology in geotechnical engineering by offering both accurate predictive capability and enhanced process understanding through interpretable ML approaches. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Geotechnical Engineering)
Show Figures

Figure 1

17 pages, 3950 KB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Viewed by 738
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 1667 KB  
Article
Evaluating the Contribution of Sporosarcina to Carbonate Precipitation in Anaerobic Soils: A Microbial Community and Quantitative Analysis
by Zen-ichiro Kimura, Ko-shiro Kirihara, Saki Komoto, Wataru Sera, Ryota Kojima, Sota Ihara, Yuya Itoiri, Daisuke Tanikawa and Yuki Iwasaki
Appl. Microbiol. 2025, 5(2), 53; https://doi.org/10.3390/applmicrobiol5020053 - 30 May 2025
Viewed by 852
Abstract
Microbially induced calcite precipitation (MICP) has attracted attention as an environmentally friendly soil stabilization method, with Sporosarcina pasteurii being a key ureolytic bacterium in this process. However, its behavior in oxygen-limited environments remains poorly understood, limiting the predictability of MICP outcomes in natural [...] Read more.
Microbially induced calcite precipitation (MICP) has attracted attention as an environmentally friendly soil stabilization method, with Sporosarcina pasteurii being a key ureolytic bacterium in this process. However, its behavior in oxygen-limited environments remains poorly understood, limiting the predictability of MICP outcomes in natural soils. This study investigated the population dynamics of Sporosarcina in compacted soil reactors operated under aerobic and anaerobic conditions, including saturated environments. Quantitative PCR and 16S rRNA gene sequencing revealed that Sporosarcina thrived and became dominant under aerobic, unsaturated conditions, but failed to maintain a high abundance under anaerobic or saturated conditions. These findings indicate that gas-phase oxygen—not merely its presence in the overlying atmosphere—is essential for effective Sporosarcina-driven MICP. The results highlight a critical environmental constraint that limits the application of biostimulation strategies relying on indigenous Sporosarcina in oxygen-poor soils. This study provides the first in situ evidence linking oxygen availability and microbial dominance in MICP systems, with implications for optimizing microbial soil stabilization in real-world conditions. Full article
Show Figures

Figure 1

19 pages, 9292 KB  
Article
Research on the Anti-Erosion Capacity of Aeolian Sand Solidified with Enzyme Mineralization and Fiber Reinforcement Under Ultraviolet Erosion and Freeze–Thaw Erosion
by Jia Liu, Qinchen Zhu, Gang Li, Jing Qu and Jinli Zhang
Sustainability 2025, 17(11), 5053; https://doi.org/10.3390/su17115053 - 30 May 2025
Viewed by 604
Abstract
Aeolian sand is susceptible to wind and water erosion, which seriously restricts the ecological restoration and sustainable development in desert areas. Traditional solidification methods have characteristics of high cost, easy pollution, and unstable solidification. Enzyme-induced calcium carbonate precipitation (EICP) is an emerging method [...] Read more.
Aeolian sand is susceptible to wind and water erosion, which seriously restricts the ecological restoration and sustainable development in desert areas. Traditional solidification methods have characteristics of high cost, easy pollution, and unstable solidification. Enzyme-induced calcium carbonate precipitation (EICP) is an emerging method that has advantages in terms of cost-effectiveness, environmental friendliness, and durability, and, especially when coupled with fiber reinforcement (FR), it can significantly prevent brittle fracture. In this paper, ultraviolet (UV) erosion and freeze–thaw (FT) erosion tests were conducted to investigate the anti-erosion capacity of aeolian sand solidified by EICP and basalt fiber reinforcement (BFR) or wool fiber reinforcement (WFR). According to the analysis of the variation laws of sample appearance, quality losses, and unconfined compressive strength (UCS) during the UV and FT erosion process, the erosion mechanism was revealed, and the UCS models considering the damage effects were established. The research results indicated that the UCS of aeolian sand solidified by MICP and FR was significantly improved under UV and FT erosion. The strength loss rates of aeolian sand solidified by EICP, EICP–BFR, and EICP–WFR reached 45.4%, 46.6%, and 51.6%, respectively, under 90 h UV erosion. When the FT cycles reached 8, the strength loss rate of aeolian sand solidified by EICP, EICP–BFR, and EICP–WFR attained 41.0%, 49.2%, and 55.8%, respectively. The determination coefficients of the UCS models were all greater than 0.876, indicating that the experimental results were in good agreement with the predicted results, verifying the reliability of the established models. The research results can offer reference values for windproof and sand fixation in desert areas. Full article
Show Figures

Figure 1

21 pages, 6227 KB  
Article
A One-Phase Injection Method with Dual Inhibition for Improving the Strength and Uniformity of MICP
by Yanni Huang, Fengyin Liu and Xiangtong Zhang
Materials 2025, 18(11), 2514; https://doi.org/10.3390/ma18112514 - 27 May 2025
Viewed by 472
Abstract
The formation and spatial uniformity of calcium carbonate (CaCO3) are critical for evaluating the effectiveness of microbial-induced calcium carbonate precipitation (MICP) in geotechnical applications. In recent years, the single-phase injection method has emerged as a promising alternative to traditional two-phase processes [...] Read more.
The formation and spatial uniformity of calcium carbonate (CaCO3) are critical for evaluating the effectiveness of microbial-induced calcium carbonate precipitation (MICP) in geotechnical applications. In recent years, the single-phase injection method has emerged as a promising alternative to traditional two-phase processes by addressing the issue of uneven CaCO3 distribution. This study proposes a dual inhibition strategy that delays the mineralization reaction by synergistically lowering pH and temperature, thereby promoting uniform precipitation and enhanced compressive strength in cemented sand columns. A series of experiments, including bacterial growth, aqueous reaction, sand column reinforcement, and microstructural characterization, were conducted. Results show that the minimum pH required for flocculation increases from ~4.5 at 40 °C to ~6.0 at 10 °C. Under dual inhibition, the lag period effectively improved the spatial uniformity of CaCO3 and enabled complete calcium utilization within 24 h. After four treatment cycles, the CaCO3 content at 10 °C increased by 53%, and the unconfined compressive strength reached 2.5 MPa, a 50% improvement over the 40 °C condition. XRD analysis confirmed that calcite was the dominant phase (85–90%), accompanied by minor vaterite. These findings demonstrate the adaptability and efficiency of the dual inhibition method across temperature ranges, providing a cost-effective solution for broader engineering applications. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

16 pages, 2742 KB  
Review
Urease-Driven Microbially Induced Carbonate Precipitation (MICP) for the Circular Valorization of Reverse Osmosis Brine Waste: A Perspective Review
by Dayana Arias, Karem Gallardo, Manuel Saldana and Felipe Galleguillos-Madrid
Minerals 2025, 15(5), 543; https://doi.org/10.3390/min15050543 - 20 May 2025
Viewed by 1247
Abstract
The growing scarcity of freshwater has accelerated the global deployment of desalination technologies, especially reverse osmosis (RO), as an alternative to meet increasing water demands. However, this process generates substantial quantities of brine—a hypersaline waste stream that can severely impact marine ecosystems if [...] Read more.
The growing scarcity of freshwater has accelerated the global deployment of desalination technologies, especially reverse osmosis (RO), as an alternative to meet increasing water demands. However, this process generates substantial quantities of brine—a hypersaline waste stream that can severely impact marine ecosystems if improperly managed. This perspective review explores the use of urease-driven Microbially Induced Carbonate Precipitation (MICP) as a biotechnological solution aligned with circular economy principles for the treatment and valorization of RO brines. Through the enzymatic activity of ureolytic microorganisms, MICP promotes the precipitation of calcium carbonate and other mineral phases, enabling the recovery of valuable elements and reducing environmental burdens. Beyond mineral capture, MICP shows promise in the stabilization of toxic metals and potential integration with microbial electrochemical systems for energy applications. This review summarizes current developments, identifies existing challenges, such as microbial performance in saline conditions and reliance on conventional urea sources, and proposes future directions focused on strain optimization, nutrient recycling, and process scalability for sustainable implementation. Full article
Show Figures

Figure 1

26 pages, 16209 KB  
Article
A Bacteria Acclimation Technology Based on Nitrogen Source Regulation and Its Application in the Reinforcement of Island and Reef Slopes
by Xin Chen, Ziyu Wang, Liang Cao, Peng Cao, Shuyue Liu, Yu Xie and Yingqi Xie
J. Mar. Sci. Eng. 2025, 13(5), 848; https://doi.org/10.3390/jmse13050848 - 24 Apr 2025
Viewed by 655
Abstract
Microbially Induced Calcium Carbonate Precipitation (MICP) technology has garnered significant attention in geotechnical engineering and environmental remediation due to its environmentally friendly and cost-effective advantages. However, the current MICP technology faces challenges in practical engineering applications, particularly the prolonged cementation time, which makes [...] Read more.
Microbially Induced Calcium Carbonate Precipitation (MICP) technology has garnered significant attention in geotechnical engineering and environmental remediation due to its environmentally friendly and cost-effective advantages. However, the current MICP technology faces challenges in practical engineering applications, particularly the prolonged cementation time, which makes it difficult to meet the requirements for coastal slope reinforcement. Therefore, this study designed novel cultivation conditions for Sporosarcina pasteurii by regulating external nitrogen source concentration and evaluated its environmental adaptability by measuring OD600, urease activity, and bacterial length. By monitoring the changes in Ca2+ concentration, pH, and precipitation rate over time during the mineralization process, rapid cementation under MICP conditions was achieved. The engineering applicability of this approach in slope reinforcement was comprehensively assessed through simulated on-site scouring and penetration tests. The reinforcement mechanism and the microstructure of the cementation under novel cultivation conditions were analyzed using scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). The results indicated that the activity of Sporosarcina pasteurii in the modified NH4-YE medium significantly improved in freshwater environments, and the MICP mineralization reaction was rapid, completing within 4 h. The primary crystal form of the generated precipitate was rhombohedral calcite, which formed a tightly bonded microstructure with calcareous sand, achieving a maximum reinforcement strength of 13.61 MPa. The penetration strength increased by at least 20%, and the precipitation rate improved by at least 2-fold. The scouring morphology remained essentially unchanged within 6 h. The findings of this study provide foundational and theoretical data for the application of MICP reinforcement technology to coastal calcareous sand models. Full article
(This article belongs to the Special Issue Marine Geotechnical Applications in Marine Structures)
Show Figures

Figure 1

23 pages, 15057 KB  
Article
A Fractal Characteristics Analysis of the Pore Throat Structure in Low-Permeability Sandstone Reservoirs: A Case Study of the Yanchang Formation, Southeast Ordos Basin
by Huanmeng Zhang, Xiaojun Li, Junfeng Liu, Yiping Wang, Ling Guo, Zhiyu Wu and Yafei Tian
Fractal Fract. 2025, 9(4), 224; https://doi.org/10.3390/fractalfract9040224 - 1 Apr 2025
Cited by 4 | Viewed by 621
Abstract
In the Southeastern Ordos Basin, the Chang 2 low-permeability sandstone reservoir of the Triassic Yanchang Formation is a typical heterogeneous reservoir. Quantitatively characterizing and analyzing its complex pore throat structure has become crucial for enhancing storage and production in the study area. The [...] Read more.
In the Southeastern Ordos Basin, the Chang 2 low-permeability sandstone reservoir of the Triassic Yanchang Formation is a typical heterogeneous reservoir. Quantitatively characterizing and analyzing its complex pore throat structure has become crucial for enhancing storage and production in the study area. The pore throat structure is a key factor influencing reservoir properties. To achieve this, a comprehensive suite of analytical techniques was employed, including cast thin section (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), and mercury intrusion capillary pressure (MICP). This study quantitatively characterizes the pore size distribution of reservoirs in the Southeast Ordos Basin. Based on fractal theory, it clarifies the complexity of the pore throat structure and the degree of microscopic heterogeneity at different scales. Finally, this study reveals the correlation between fractal dimensions and storage and permeability capacities and analyzes the controlling factors. The findings indicate that the predominant lithotype in the study area is fine-grained feldspar sandstone, which develops pore types such as intergranular pores, dissolution pores, and microfractures. Based on the shapes of mercury injection curves and pore throat structural parameters, and in conjunction with SEM images, the samples are categorized into three types. Type I samples exhibit good pore throat connectivity and are characterized by a lattice model. Type II samples are characterized by a tubular pore throat model. Type III samples have poor pore throat connectivity and are characterized by an isolated model. The pore throat network of low-permeability sandstone is primarily composed of micropores (pore throat radius r < 0.1 μm), mesopores (0.1 < r < 1.0 μm), and macropores (r > 1.0 μm). The complexity of the reservoir pore throat structure was quantitatively characterized by fractal theory. The total fractal dimension (D) of all the samples is between 2 and 3, which indicates that the reservoir has capillary fractal characteristics. The average fractal dimension of micropores (D1) is 2.57, while that for mesopores (D2) and macropores (D3) is slightly higher, at an average of 2.68. This suggests that micropores have higher self-similarity and homogeneity. The fractal dimensions D1, D2, and D3 of the three types of reservoirs all exhibit a negative correlation with porosity and permeability. This shows that the more complex the pore throat structure is, the worse the storage and seepage capacity of the reservoir. For type I samples, the correlation of D3 with pore throat structural parameters such as entry pressure, skewness, and maximum mercury saturation is better than that of D2 and D1. For type II and type III samples, D2 shows a significant correlation with pore throat structural parameters. This indicates that the heterogeneity and complexity of mesopores are key factors influencing the pore throat structure of poor-quality reservoirs. Different mineral compositions have varying effects on the fractal characteristics of pore structures. Quartz, feldspar, and clay exert both negative and positive dual impacts on reservoir quality by altering the pore throat structure and the diagenetic processes. The mineral content exhibits a complex quadratic relationship with the fractal dimension. Moreover, micropores are more significantly influenced by the mineral content. The study of the relationship between the fractal dimension and physical properties, pore throat structural parameters, and mineral composition can improve the understanding of the reservoir quality of low-permeability reservoirs. This provides a theoretical basis for exploration and improving the recovery rate in the study area. Full article
Show Figures

Figure 1

23 pages, 7900 KB  
Article
Microbial Culture Condition Optimization and Fiber Reinforcement on Microbial-Induced Carbonate Precipitation for Soil Stabilization
by Changjun Wang, Xiaoxiao Li, Jianjun Zhu, Wenzhu Wei, Xinran Qu, Ling Wang, Ninghui Sun and Lei Zhang
Sustainability 2025, 17(7), 3101; https://doi.org/10.3390/su17073101 - 31 Mar 2025
Cited by 1 | Viewed by 1026
Abstract
Traditional soil stabilization methods, including cement and chemical grouting, are energy-intensive and environmentally harmful. Microbial-induced carbonate precipitation (MICP) technology offers a sustainable alternative by utilizing microorganisms to precipitate calcium carbonate, binding soil particles to improve mechanical properties. However, the application of MICP technology [...] Read more.
Traditional soil stabilization methods, including cement and chemical grouting, are energy-intensive and environmentally harmful. Microbial-induced carbonate precipitation (MICP) technology offers a sustainable alternative by utilizing microorganisms to precipitate calcium carbonate, binding soil particles to improve mechanical properties. However, the application of MICP technology in soil stabilization still faces certain challenges. First, the mineralization efficiency of microorganisms needs to be improved to optimize the uniformity and stability of carbonate precipitation, thereby enhancing the effectiveness of soil stabilization. Second, MICP-treated soil generally exhibits high fracture brittleness, which may limit its practical engineering applications. Therefore, improving microbial mineralization efficiency and enhancing the ductility and overall integrity of stabilized soil remain key issues that need to be addressed for the broader application of MICP technology. This study addresses these challenges by optimizing microbial culture conditions and incorporating polyethylene fiber reinforcement. The experiments utilized sandy soil and polyethylene fibers, with Bacillus pasteurii as the microbial strain. The overall experimental process included microbial cultivation, specimen solidification, and performance testing. Optimization experiments for microbial culture conditions indicated that the optimal urea concentration was 0.5 mol/L and the optimal pH was 9, significantly enhancing microbial growth and urease activity, thereby improving calcium carbonate production efficiency. Specimens with different fiber contents (0% to 1%) were prepared using a stepwise intermittent grouting technique to form cylindrical samples. Performance test results indicated that at a fiber content of 0.6%, the unconfined compressive strength (UCS) increased by 80%, while at a fiber content of 0.4%, the permeability coefficient reached its minimum value (5.83 × 10−5 cm/s). Furthermore, microscopic analyses, including X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM–EDS), revealed the synergistic effect between calcite precipitation and fiber reinforcement. The combined use of MICP and fiber reinforcement presents an eco-friendly and efficient strategy for soil stabilization, with significant potential for geotechnical engineering applications. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

21 pages, 3080 KB  
Review
Use of Alternative Materials in Sustainable Geotechnics: State of World Knowledge and Some Examples from Poland
by Małgorzata Jastrzębska
Appl. Sci. 2025, 15(6), 3352; https://doi.org/10.3390/app15063352 - 19 Mar 2025
Cited by 2 | Viewed by 920
Abstract
Geotechnical engineering projects carried out within the framework of the low-emission economy and the circular economy are the subject of many publications. Some of these studies present the use of various waste materials, as soil additives, for improving geomechanical behavior/properties. Many of these [...] Read more.
Geotechnical engineering projects carried out within the framework of the low-emission economy and the circular economy are the subject of many publications. Some of these studies present the use of various waste materials, as soil additives, for improving geomechanical behavior/properties. Many of these materials are eagerly used in geoengineering applications, primarily to strengthen weak subsoil or as a base layer in road construction. Information on individual applications and types of these materials is scattered. For this reason, this article briefly discusses most of the major waste materials used for achieving weak-soil improvement in geoengineering applications, and highlights pertinent bibliographic sources where relevant details can be found. The presented list includes waste from mines, thermal processes, end-of-life car tires, chemical processes (artificial/synthetic fibers), and from construction, renovation and demolition works of existing buildings and road infrastructure. The presentation of various applications is supplemented with three dynamically developing innovative technologies based on nanomaterials, microorganisms (MICP, EICP) and lignosulfonate. In addition to the positive impact of using waste (or technologies) instead of natural and raw materials, the paper encourages the reader to ponder whether the waste used really meets the criteria for ecological solutions and what is the economic feasibility of the proposed implementations. Full article
(This article belongs to the Special Issue Natural and Artificial Fibers in Geoengineering Applications)
Show Figures

Figure 1

23 pages, 32809 KB  
Article
Synergistic Effect of Microbial-Induced Carbonate Precipitation Modified with Hydroxypropyl Methylcellulose on Improving Loess Disintegration and Seepage Resistance
by Xingyu Wang and Hong Sun
Polymers 2025, 17(4), 548; https://doi.org/10.3390/polym17040548 - 19 Feb 2025
Cited by 1 | Viewed by 730
Abstract
Microbial-induced carbonate precipitation (MICP) is an eco-friendly soil stabilization technique. This study explores the synergistic effects of incorporating hydroxypropyl methylcellulose (HPMC) into the MICP process to enhance the disintegration and seepage resistance of loess. A series of disintegration, seepage, scanning electron microscopy (SEM), [...] Read more.
Microbial-induced carbonate precipitation (MICP) is an eco-friendly soil stabilization technique. This study explores the synergistic effects of incorporating hydroxypropyl methylcellulose (HPMC) into the MICP process to enhance the disintegration and seepage resistance of loess. A series of disintegration, seepage, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) tests were conducted. The results show that HPMC forms protective membranes around calcium carbonate crystals produced by MICP and soil aggregates, which enhance cementation, reduce soluble salt dissolution, promote soil particle aggregation, and seal pore structures. At the optimal 0.4% HPMC dosage, the maximum accumulative disintegration percentage and the disintegration velocity decreased to zero. Additionally, HPMC-modified MICP reduced the amount, size, and flow velocity of seepage channels in loess. The integration of MICP with HPMC provides an efficient and sustainable solution for mitigating loess disintegration and seepage issues. Full article
(This article belongs to the Special Issue Structure, Characterization and Application of Bio-Based Polymers)
Show Figures

Figure 1

Back to TopTop